Answer:
V=22.4m/s;T=2.29s
Explanation:
We will use two formulas in order to solve this problem. To determine the velocity at the bottom we can use potential and kinetic energy to solve for the velocity and use the uniformly accelerated displacement formula:

Solving for velocity using equation 1:

Solving for time in equation 2:

I believe the correct answer is B.<span>positively charged hair.</span>
Answer:
F = 19.375 x 10^-6 N
Explanation:
This problem can be solved by applying Coulomb's Law, which lets us determine the force between two electrically charged particles.
It is defined as
F = (ke * q1 * q2)/ r^2
Where,
ke = is Coulomb's constant ≈ 9×10^9 N⋅m^2⋅C^−2
q1 = 5.0 x 10^-8 C
q2 = 1.0 x 10^-7 C
r = 5 ft = 1,524 m
F = (9×10^9 N⋅m^2⋅C^−2)*(5.0 x 10^-8 C)*(1.0 x 10^-7 C)/ ((1,524 m)^2)
F = (9×10^9 N⋅m^2⋅C^−2)*(5.0 x 10^-8 C)*(1.0 x 10^-7 C)/ ((1,524 m)^2)
F = 19.375 x 10^-6 N
Answer:
For solar energy, I would show them how a magnifying glass works when exposed to the sun.
For wind energy, I would teach them how to make a paper windmill and explain how it works.
For the hydroelectric energy, I would have them make a plastic turbine and explain to them how to use it in rivers or streams.
For electromagnetic energy, I would tell them to rub a balloon until their hairs stand on end.
And for electricity, I would teach them how the other energy sources create electricity and what electricity works for in these times.
Explanation:
To explain something so complicated to a child is not as easy as it would be with a teenager or an adult.
To make the children learn about the forms of energy, I would use the nemotechnique rule, using short and easy-to-remember sentences and explaining with many examples about how to get each type of energy and its use, in addition to adding didactic, visual and auditory content, which are the most common types of learning in children.