Answer:
2.87m
Explanation:
Using the law of gravitation to solve this question
F = GMm/r²
G is the gravitational constant
M and m are the masses
r is the distance between the masses
Substitute the given values
G = 6.67×10^-11 m³/kgs²
M =8.8 x 10^6 kg
m = 5.6 x 10^5 kg
F =440N
400 = 6.67×10^-11×8.8 x 10^6 ×5.6 x 10^5/r²
400r² = 328.698×10
400r² = 3286.98
r² = 3286.98/400
r² = 8.21745
r = √8.21745
r = 2.87m
Hence the distance of separation is 2.87m
The correct answer is B the total velocity is equal at both landing and launch because before your about launch you have 0 velocity then when you have landed you also have 0 velocity. Hope This Helps
I believe that the best statement which explains why you can do this is C. <span>The extension cord is made of copper wire, which is a good conductor of electricity; however, it is covered with plastic, an insulator, which does not allow the electrical current to flow to you.
Copper is known to be one of the best conductors of electricity, and plastic can shield you from shock.
</span>
Answer:
the speed of the satellite is 12,880.53 km/h
Explanation:
Given;
radius of the circular orbit, r = 24,600 km
time taken to revolve around Earth, t = 12 hours
The circumference of the satellite is calculated as;
L = 2πr
L = 2π x 24,600 km
L = 49,200π km
L = 154,566.36 km
The speed of the satellite;
v = L/t
v = 154,566.36 / 12
v = 12,880.53 km/h
Therefore, the speed of the satellite is 12,880.53 km/h