Speed with which initially car is moving is 21 m/s
Reaction time = 0.50 s
distance traveled in the reaction time d = v t
d = 21 * 0.50 = 10.5 m
deceleration after this time = -10 m/s^2
now the distance traveled by the car after applying bakes



so total distance moved before it stop
d = 22.05 + 10.5 = 32.55 m
so the distance from deer is 35 - 32.55 = 2.45 m
now to find the maximum speed with we can move we will assume that we will just touch the deer when we stop
so our distance after brakes are applied is d = 35 - 10.5 = 24.5 m
again by kinematics



so maximum speed would be 22.1 m/s
The person driving the truck was killed
the wall was destroyed
Answer:
4
Explanation:
In order for the current to continue flowing through the circuit (and for the bulbs to continue shining), there must be a closed path containing the battery where current can flow. Let's see the effect of removing each bulb on the circuit:
- 1: when removing bulb 1 only, the current can still flow through the path battery-bulb 3- bulb 4
- 2: when removing bulb 2 only, the current can still flow through the path battery-bulb 3- bulb 4
- 3: when removing bulb 3 only, the current can still flow through the path battery-bulb 1-bulb 2- bulb 4
- 4: when removing bulb 4 only, the current can no longer flow. In fact, there is no closed path that contains the battery now, so the current will not flow and all the bulbs will stop shining.
Answer:
Explanation:
We need the power equation for this which is
P = Work/time
We have everything we need to solve this (the mass of the object is extra information):
P = 6860/4
P = 1715W