1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
sergejj [24]
4 years ago
13

A small sphere of radius R is arranged to pulsate so that its radius varies in simple harmonic motion between a minimum of R−x a

nd a maximum of R+x with frequency f. This produces sound waves in the surrounding air of density rho and bulk modulus B.
a- Find the intensity of sound waves at the surface of the sphere. (The amplitude of oscillation of the sphere is the same as that of the air at the surface of the sphere.)


b-Find the total acoustic power radiated by the sphere


c-At a distance d≫R from the center of the sphere, find the amplitude of the sound wave.


d-At a distance d≫R from the center of the sphere, find the pressure amplitude of the sound wave.


e-At a distance d≫R from the center of the sphere, find the intensity of the sound wave.


Express your answer in terms of the variables R, x, f, and appropriate constants.
Physics
1 answer:
Colt1911 [192]4 years ago
5 0

Answer:

The intensity of sound wave at the surface of the sphere I =   \frac{ 2\pi^{2}R^{2} f^{2}\sqrt{\rho B}(\triangle R)^{2}}{ d^{2} }

Explanation:

B = Bulk modulus

Intensity, I = \frac{P_{max} ^{2} }{2\sqrt{\rho B} }

The amplitude of oscillation of the sphere is given by:

P_{max} = BkA\\k = \frac{2\pi }{\lambda} \\

A = \triangle R\\

Substitute v and A into Pmax

P_{max} = (2\pi f)\sqrt{\rho B} \triangle R\\ P_{max} ^{2} = 4\pi^{2} *f^{2} \rho B (\triangle R)^{2}

I = \frac{ 4\pi^{2} f^{2} \rho B (\triangle R)^{2}}{2\sqrt{\rho B} }

P_{total} = 4\pi R^{2} I

P_{total} =4\pi R^{2}  \frac{ 2\pi^{2} f^{2} \rho B (\triangle R)^{2}}{\sqrt{\rho B} }

The intensity of the sound wave at a distance  is given by:

I = \frac{P_{total} }{4\pi d^{2} }

I = 4\pi R^{2}  \frac{ 2\pi^{2} f^{2} \rho B (\triangle R)^{2}}{\sqrt{\rho B} } * \frac{1}{4\pi d^{2} } \\I =   \frac{ 2\pi^{2}R^{2} f^{2}\sqrt{\rho B}(\triangle R)^{2}}{ d^{2} }

You might be interested in
The term solstice translates as "Sun stop." Explain why this translation makes sense from an astronomical point of view. It make
adoni [48]

Answer:

It makes sense because on that the day  the sun stops moving northward and starts moving southward

Explanation:

4 0
4 years ago
Read 2 more answers
a soccer ball accelerates more than a bowling ball when thrown with the same force. which law of newton best supports this?
Vedmedyk [2.9K]

Answer:

Newtons second law of motion known as the law of acceleration

Explanation:

The second law explains that a greater mass requires a greater force

3 0
2 years ago
how does spatial pattern of heights illustrate the relationship between temperature density and the rate of vertical pressure ch
Anika [276]

The rate of change of vertical pressure is directly proportional to density and also directly proportional to temperature.

Generally, the relationship between temperature, density and rate of vertical pressure is given as;

\rho = \frac{PM}{RT}

\frac{dP}{dz} = -\rho g\\\\

where;

  • <em>ρ is density</em>
  • <em>T is temperature</em>
  • <em>dP is rate of change of vertical  pressure</em>

Thus, from the formula above, we can conclude the following relationship between temperature, density and the rate of vertical pressure change in spatial pattern of heights.

The rate of change of vertical pressure is directly proportional to density and also directly proportional to temperature.

Learn  more here:brainly.com/question/25395377

5 0
3 years ago
A paintball’s mass is 0.0032kg. A typical paintball strikes a target moving at 85.3 m/s.
vekshin1

Answer:

A)  If the paintball stops completely the magnitude of the change in the paintball’s momentum is  p=0.273kg*m/s

B) If the paintball bounces off its target and afterward moves in the opposite direction with the same speed, the change in the paintball’s momentum is  p=0.546kg*m/s

C) A paintball bouncing off your skin in the opposite direction with the same speed hurts more than a paintball exploding upon your skin because of the strength exerted is twice than if it explodes.

Explanation:

Hi

A) We use the formula of momentum p=mv, so we have p=0.0032kg*85.3m/s=0.273kg*m/s

B) We use the same formula above, then due we have a change of direction at the same speed, therefore the change in the momentum is the double so

p=2*0.0032kg*85.3m/s=0.546kg*m/s.

C) The average strength of the force an object exerts during impact is determined by the amount the object’s momentum changes. therefore

F=\frac{\Delta p}{\Delta t}, as we don't have any data about the impact time but we know momentum is twice, time does no matter and strength is twice too.

4 0
3 years ago
Jesse wants to know how well a particular brand of car wax protects his car from dirt. What is the independent variable ?
miv72 [106K]
The brand of car wax
4 0
3 years ago
Other questions:
  • Two men, Joel and Jerry, each pushes an object that are identical on a horizontal frictionless floor starting from rest. Joel an
    11·1 answer
  • How much force is needed to stop a 120-kg ice-hockey player if he decelerates at 20 m/s²?
    14·1 answer
  • Large electric fields in cell membranes cause ions to move through the cell wall. The field strength in a typical membrane is 1.
    5·1 answer
  • A manufacturer of printed circuit boards has a design capacity of 1,000 boards per day. the effective capacity, however, is 700
    15·1 answer
  • A 27.4 kg dog is running northward at 2.19 m/s , while a 7.19 kg cat is running eastward at 2.78 m/s . Their 75.7 kg owner has t
    10·1 answer
  • A turtle and a rabbit are in a 150 meter race. The rabbit decides to give the turtle a 1 minute head start. The turtle moves at
    11·1 answer
  • 1. What is the sensor that focuses and image in a camera called?
    5·2 answers
  • Question 25
    10·1 answer
  • If the mass of the body is tripled and its velocity becomes doubled, then the linear momentum of the body will​
    5·1 answer
  • Bumper car A (281 kg) moving
    8·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!