1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Paul [167]
3 years ago
13

A football player carrying the ball runs straight ahead at the line of scrimmage and directly into a wall of defensive linemen.

The ball carrier has an initial speed of 7.36 m/s and is stopped in a time interval of 0.180 s. Find the magnitude and direction of his average acceleration.
Physics
1 answer:
Colt1911 [192]3 years ago
4 0

solution:

we have the following formula for average acceleration\\a_{ave}=\frac{v_{f}-v_{i}}{t}\\=\frac{0-(7.36)}{0.180}\\=-40.88m/s^2\\

Now the direction of this signed acceleration is towards in the direction of travel of the ball carrier.

But as this acceleration is negative we could just as validly state that the acceleration is 40.88m/s^2in the opposite direction to the ball carrier's travel.

Although both are valid, the latter statement is probably the answer you are expected to give .



You might be interested in
6. A 145-g baseball moving 30.5 m/s strikes a stationary 5.75-kg brick resting on small rollers so it moves without significant
Sindrei [870]

Answer:

Explanation:

a )

momentum of baseball before collision

mass x velocity

= .145 x 30.5

= 4.4225 kg m /s

momentum of brick after collision

= 5.75 x 1.1

= 6.325 kg m/s

Applying conservation of momentum

4.4225 + 0 = .145 x v + 6.325 , v is velocity of baseball after collision.

v = - 13.12 m / s

b )

kinetic energy of baseball  before collision = 1/2 mv²

= .5 x .145 x 30.5²

= 67.44 J

Total kinetic energy before collision = 67.44 J

c )

kinetic energy of baseball after collision = 1/2 x .145 x 13.12²

= 12.48 J .

 kinetic energy of brick after collision

= .5 x 5.75 x 1.1²

= 3.48 J

Total kinetic energy after collision

= 15.96 J

3 0
3 years ago
In order to catch a fast-moving softball with your bare hand, you extend your hand forward just before the catch and then let th
hichkok12 [17]
This is a concept of momentum. In equation, momentum is the product of force and distance. When a ball is thrown, its force is constant all throughout unless disturbed by an external force. Therefore, force is the constant of proportionality that relates momentum with distance. When you block a ball from a given distance, you would feel the great force on your hand. In order to reduce the force, you have to follow the direction of the force in order to minimize the impact. By doing this, you gradually decrease the momentum of the ball. 
8 0
3 years ago
Please Help! When a metal is heated, the free electrons gain _____________.
lakkis [162]
It’s B potential energy
7 0
3 years ago
Read 2 more answers
Calculate the electric potential energy in a capacitor that stores 4.0 10-10 C of charge at 250.0 V
Arada [10]
Q = C.v
v = Q/C
v = 4 × 10^(-10)/250
 = 4 × 10^(-10)/2.5 × 10^2
 = 1.6 × 10^(-12) volt
7 0
3 years ago
Read 2 more answers
vA 61.2-kg circus performer is fired from a cannon that is elevated at an angle of 57.8 ° above the horizontal. The cannon uses
dsp73

Answer:

The effective spring constant of the firing mechanism is 1808N/m.

Explanation:

First, we can use kinematics to obtain the initial velocity of the performer. Since we know the angle at which he was launched, the horizontal distance and the time in which it's traveled, we can calculate the speed by:

v_0_x=\frac{x}{t}\\ \\v_0\cos\theta=\frac{x}{t}\\\\v_0=\frac{x}{t\cos\theta}

(This is correct because the horizontal motion has acceleration zero). Then:

v_0=\frac{20.8m}{(2.60s)\cos57.8\°}\\\\v_0=15.0m/s

Now, we can use energy to obtain the spring constant of the firing mechanism. By the conservation of mechanical energy, considering the instant in which the elastic band is at its maximum stretch as t=0, and the instant in which the performer flies free of the bands as final time, we have:

E_0=E_f\\\\U_e=K\\\\\frac{1}{2}kx^2=\frac{1}{2}mv^2\\\\\implies k=\frac{mv^2}{x^2}

Then, plugging in the given values, we obtain:

k=\frac{(61.2kg)(15.0m/s)^2}{(2.76m)^2}\\\\k=1808N/m

Finally, the effective spring constant of the firing mechanism is 1808N/m.

3 0
3 years ago
Other questions:
  • a 95.00 kg man on ice skates catches a moving ball at 18 m/s. the man is initially at rest. the man and ball move together after
    13·1 answer
  • Cosmologist study ____
    12·2 answers
  • What is the overall function of the<br> excretory system?
    13·2 answers
  • If you were to yell at a canyon wall, you would hear yourself a short time later. This is because sound can be
    6·2 answers
  • A charge enters a uniform magnetic field oriented perpendicular to its path. The field deflects the particle into a circular arc
    14·1 answer
  • An unknown substance has a mass of 11.9 g . When the substance absorbs 1.071×102 J of heat, the temperature of the substance is
    15·1 answer
  • Speed is the ratio of the distance an object moves to
    15·1 answer
  • 11. 2 cm of rain falls in 10 minutes. The rain fall
    8·1 answer
  • Put the balloon near (BUT NOT TOUCHING) the wall. Leave about as much space as the width of your pinky finger between the balloo
    11·1 answer
  • Which phrase describes an electromagnetic wave
    7·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!