The average acceleration between t = 5.6 s and t = 8.5 s is 2.31 m/s²
<h3>What is acceleration?</h3>
Acceleration is defined as the rate change of velocity with time.
acceleration a = (Δv) / (Δt)
An object is moving with initial velocity u =5.7 m/s and its final velocity v= -1.0 m/s.
Time taken for the change in speed, t= 8.5 - 5.6 = 2.9 seconds
The acceleration is given by
a = (-1 - 5.7)/ 2.9
a = - 2.31 m/s²
|a | = 2.31 m/s²
Thus, the object's acceleration is 2.31 m/s²
Learn more about acceleration.
brainly.com/question/12550364
#SPJ1
Answer:
person when the point-light walker is moving
Explanation:
A point light walker is an arrangement of dots that moves in a way that mimics a human walking. This is used in the field of Biological Motion Perception.
Biological motion perception is the science that deals with how our brain perceives motion. In order to understand how the brain perceives motion a point light walker is used.
We are given an object that is speeding up on a level ground.
Let's remember that the gravitational energy depends on the change in height, therefore, if the object is not changing its height it means that the gravitational energy remains constant.
The kinetic energy depends on the velocity. If the velocity is increasing this means that the kinetic energy is also increasing.
Now, every change in velocity requires acceleration and acceleration requires a force. The force and the distance that the object moves are equivalent to the work that is transferred to the object and therefore, the change in kinetic energy. This means that the total energy of the system increases as work is transferred to the mass.
We have that the total energy of the system increases in the form of kinetic energy and that the gravitational potential energy remains constant. Therefore, the diagrams should look like pie charts that grow but the area of the segment of the potential energy stays the same. It should look similar to the following.
That's the 'electrostatic' force.
Answer: Newton, the unit of force, is defined based on Newton's Second Law (F=ma), as the force required to give a mass of one kilogram an acceleration of 1 meter/second2. Thus, it is derived from these other units.
Explanation: