Part (a): Magnetic dipole moment
Magnetic dipole moment = IA, I = Current, A = Area of the loop
Then,
Magnetic dipole moment = 2.6*π*0.15^2 = 0.184 Am^2
Part (b): Torque acting on the loop
T = IAB SinФ, where B = Magnetic field, Ф = Angle
Then,
T = Magnetic dipole moment*B*SinФ = 0.184*12*Sin 41 = 1.447 Nm
Answer:
Material's density
Explanation:
Seismic waves travel at different rates of speed based on a material's density. Hopefully, you understand that the Earth has three main layers: the crust, mantle, and core. Earthquake waves move faster through solids.

Maximum height
= (Usinα)^2/2g
(50*0.5)^2/20
25^2/20
625/20
=31.25metres
horizontal distance = Range= [U^2 * sin2α]/g
[50^2 * sin60]/10
2500 * 0.8660/10
2165/10=216.5metres
Answer:
<em>The magnitude of the magnetic field will act in a direction towards me.</em>
<em></em>
Explanation:
When a charged particle enters a magnetic field, it is deflected. The direction of travel of the particle is deflected, but the kinetic energy of the particle is not affected. <em>The force experienced by a charged particle as it enters a magnetic field that acts perpendicular to the path of the velocity of the particle, will produce a force that is perpendicular to both the direction of travel of the particle and the direction of the magnetic field.</em> In this case, the proton moves in the y-direction, the magnetic field is in the x-direction, therefore the force experienced by the particle will be towards me.
<u>Answer:</u>
Mass of C in 3.40 g of HCN =1.51 gram.
<u>Explanation:</u>
Mass of sample of HCN = 7.99 g
Mass of H in 7.99 g of HCN = 0.296 g
Mass of N in 7.99 g of HCN = 4.14 g
Mass of C in 7.99 g of HCN = (7.99-0.296-4.14) = 3.554 g
Now mass of HCN = 3.40 g
Mass of C in 3.40 g of HCN = 
So mass of C in 3.40 g of HCN =1.51 gram.