Part I
We have the size of the sheet of cardboard and we'll use the variable "x" to represent the length of the cuts. For any given cut, the available distance is reduced by twice the length of the cut. So we can create the following equations for length, width, and height.
width: w = 12 - 2x
length: l = 18 - 2x
height: h = x
Part II
v = l * w * h
v = (18 - 2x)(12 - 2x)x
v = (216 - 36x - 24x + 4x^2)x
v = (216 - 60x + 4x^2)x
v = 216x - 60x^2 + 4x^3
v = 4x^3 - 60x^2 + 216x
Part III
The length of the cut has to be greater than 0 and less than half the length of the smallest dimension of the cardboard (after all, there has to be something left over after cutting out the corners). So 0 < x < 6
Let's try to figure out an x that gives a volume of 224 in^3. Since this is high school math, it's unlikely that you've been taught how to handle cubic equations, so let's instead look at integer values of x. If we use a value of 1, we get a volume of:
v = 4x^3 - 60x^2 + 216x
v = 4*1^3 - 60*1^2 + 216*1
v = 4*1 - 60*1 + 216
v = 4 - 60 + 216
v = 160
Too small, so let's try 2.
v = 4x^3 - 60x^2 + 216x
v = 4*2^3 - 60*2^2 + 216*2
v = 4*8 - 60*4 + 216*2
v = 32 - 240 + 432
v = 224
And that's the desired volume.
So let's choose a value of x=2.
Reason?
It meets the inequality of 0 < x < 6 and it also gives the desired volume of 224 cubic inches.
The square root of 24 simplifys to:
√24
2√6
Since √6 is inbetween √4 and √9, it is somewhere in between 2 and 3. Really, the best option is to use a calculator.√24 is approximately 4.9. <span />
Using binomial distribution where success is the appearing of any of the top 10 most common names, thus probability of success (p) is 9.6% = 0.096 and the probability of failure = 1 - 0.096 = 0.904. Number of trials is 11.
Binomial distribution probability is given by P(x) = nCx (p)^x (q)^(n - x)
Probability that none of the top 10 most common names appears is P(0) = 11C0 (0.096)^0 (0.904)^(11 - 0) = (0.904)^11 = 0.3295
Thus, the probability that at least one of the 10 most common names appear is 1 - 0.3295 = 0.6705
Therefore, I will be supprised that none of the names of the authors were among the 10 most common names given that the probability that at least one of the names appear is 67%.
I believe that the answer to the equation is 10