Answer:
The quantity of energy per photon is inversely proportional to the wavelength of the light.
Explanation:
Energy of light is given as
E = hf
where E = energy of the photons,
f = frequency of the light
If the number of photons = n
(E/n) = (h/n) f
Let (E/n) = E'
(h/n) = h'
But the frequency of light is related to wavelength through the relation
v = fλ
where v = speed of light = c
λ = wavelength of light
f = (c/λ)
E' = h' f
Substituting for f
E' = h' (c/λ)
h' and c are both constants, h'×c = K
E' = (K/λ)
So, the quantity of energy per photon is inversely proportional to the wavelength of the light.
Hope this Helps!!!
Answer:
I. Speed = 20m/s
II. Velocity = 20m/s due North.
Explanation:
<u>Given the following data;</u>
Distance = 40m
Time = 2secs
To find the speed;
Mathematically, speed is given by the formula;
Substituting into the equation, we have;
<em>Speed = 20m/s.</em>
In physics, we use the same formula for calculating speed and velocity. The only difference is that speed is a scalar quantity and as such has magnitude but no direction while velocity is a vector quantity and as such it has both magnitude and direction.
<em>Therefore, the velocity is 20m/s due North</em>.
Please find attached photograph for your answer. Please do comment whether it is useful or not
The sprinter’s average acceleration is 1.98 m/s²
The given parameters;
- initial velocity of the sprinter, u = 18 km/h
- final velocity of the sprinter, v = 27 km/h
- time of motion of the sprinter, t = 3.5 x 10⁻⁴ h
Convert the velocity of the sprinter to m/s;
The time of motion is seconds;
The sprinter’s average acceleration is calculated as follows;
Thus, the sprinter’s average acceleration is 1.98 m/s²
Learn more here:brainly.com/question/17280180
a. 0.5 T
- The amplitude A of a simple harmonic motion is the maximum displacement of the system with respect to the equilibrium position
- The period T is the time the system takes to complete one oscillation
During a full time period T, the mass on the spring oscillates back and forth, returning to its original position. This means that the total distance covered by the mass during a period T is 4 times the amplitude (4A), because the amplitude is just half the distance between the maximum and the minimum position, and during a time period the mass goes from the maximum to the minimum, and then back to the maximum.
So, the time t that the mass takes to move through a distance of 2 A can be found by using the proportion
and solving for t we find
b. 1.25T
Now we want to know the time t that the mass takes to move through a total distance of 5 A. SInce we know that
- the mass takes a time of 1 T to cover a distance of 4A
we can set the following proportion:
And by solving for t, we find