The equation of the energy of a photon is E=h*f.
If we increase the Planck's constant h, the energy would increase.
For example, lets double the value of Planck's constant and name it H:
H=2*h. Now lets put that into the equation for energy that we will call E₂:
E₂=H*f=2*h*f=2*E.
So we can clearly see that E₂=2*E or that if we double Planck's constant, the energy also doubles.
Answer:
Newton's second law
Explanation:
The relationship between mass and acceleration is described in Newton's Second Law of Motion. His Second Law states that the more mass an object has, more force is necessary for it to accelerate.
Force = (mass) x (acceleration)
5 N = (9 kg) x (acceleration)
Divide each side
by 9 kg : 5 N / 9 kg = acceleration
Acceleration = (5/9) kg-meter/sec²-kg
= 0.555... m/s² .
Answer:
B. The same on the moon.
Explanation:
The density of an object is the ratio of the mass contained by the object to the volume occupied by that mass.

When the object is taken from the earth to anywhere in the universe, its mass remains constant. The dimensions of the object and hence its volume also remains constant anywhere in the universe.
Therefore, the density of the object will also remain the same as it depends upon the mass and the volume of the object.
So, the correct option is:
<u>B. The same on the moon.</u>
Answer:
Light includes ALL of these answers: Radio/Microwaves. Visible light and X-rays/Gamma rays.