V1/T1 = V2 / T2
V1 = 3/4(1700) = 1275
T1 = 10 + 273.15 = 283.15
V2 = 1700
T2 = V2T1
T2 = (1700) (283.15) / 1275
T2 = 377.53 K
1070 hours.
1 mole of iron-59 would mass 59 grams, so 0.133 picograms would be 0.133x10^-12 / 59 = 2.25x10^-15 moles of iron-59. Multiplying by Avogadro's number, we can determine the number of atoms of iron-59 we have, so: 2.25x10^-15 * 6.02214x10^23 = 1.35x10^9
Since we have 242 decays over a period of 1 second, we can divide the
number of atoms left by the original number of atoms
(1350000000 - 242)/1350000000
= 1349999758/1350000000
= 0.999999820740741
And calculate the logarithm to base 2 of that quotient.
ln(0.999999820740741)/ln(2)
= -1.79259275281191x10^-7/0.693147180559945
= -2.58616467481524x10^-7
The reciprocal of this number will be the half life in seconds. So
-1/2.58616467481524x10^-7
= -3866729.79388461
And dividing by 3600 (number of seconds in an hour) will give the half-life in
hours.
-3866729.79388461 / 3600 = -1074.091609
So the half life in hours to 3 significant figures is 1070 hours.
Dividing that figure by 24 gives a half life of 44.58 days which is in pretty close agreement to the official half-life of 44.495 days for iron-59.
Hi I'm in Chemistry too this year,
I believe D is correct because usually physical changes are things like density, color or quantity.
Answer:
Antifreeze is whats used to keep your engine cool without freezing.
Explanation:
it keeps the engine from overheating.
It also prevents corrosion.
Here is a quote from google "Antifreeze works because the freezing and boiling points of liquids are “colligative” properties. This means they depend on the concentrations of “solutes,” or dissolved substances, in the solution. A pure solution freezes because the lower temperatures cause the molecules to slow down"
That quote is from "The Science Behind Antifreeze"
If you have any questions feel free to ask in the comments.