Explanation :
(a) 
This reaction is combustion reaction in which an oxygen react with a molecule to give its corresponding oxides ans water molecule.
(b) 
This reaction is a redox reaction or oxidation-reduction reaction in which sulfur get oxidized and oxygen get reduced.
(c) 
This reaction is a combination reaction in which the two reactants molecule combine to form a large molecule or product.
(d) 
This reaction is a decomposition reaction in which a large molecule or reactant decomposes to give two or more molecule or products.
(e) 
This reaction is a double displacement reaction in which the cation of two reactants molecule exchange their places to give two different products.
(f) 
This reaction is a combination reaction in which the two reactants combine to form a large molecule or product.
(g) 
This reaction is a double displacement reaction in which the cation of two reactants molecule exchange their places to give two different products.
(h) 
This reaction is combustion reaction in which a hydrocarbon react with an oxygen to give carbon dioxide and water as a products.
The Boyle-Mariotte's law or Boyle's law is one of the laws of gases that <u>relates the volume (V) and pressure (P) of a certain amount of gas maintained at constant temperature</u>, as follows:
PV = k
where k is a constant.
We can relate the state of a gas at a specific pressure and volume to another state in which the same gas is at different P and V since the product of both variables is equal to a constant, according to the Boyle's law, which will be the same regardless of the state of the gas. In this way,
P₁V₁ = P₂V₂
Where P₁ and V₁ is the pressure and volume of the gas to a state 1 and P₂ and V₂ is the pressure and volume of the same gas in a state 2.
In this case, in the state 1 the gas occupies a volume V₁ = 100 mL at a pressure of P₁ = 150 kPa. Then, in the state 2 the gas occupies a volume V₂ (that we must calculate through the boyle's law) at a pressure of P₂ = 200 kPa. Substituting these values in the previous equation and clearing V₂, we have,
P₁V₁ = P₂V₂ → V₂ =
→ V₂ = 
→ V₂ = 75 mL
Then, the volume occupied by the gas at 200 kPa is V₂ = 75 mL
Answer:
4.52 x 10¹⁴ cycles/s
Explanation:
From c = f·λ => f = c/λ = (3.0 x 10⁸ m/s)/(6.63 x 10⁻⁷m) = 4.52 x 10¹⁴ cycles/s.
f = frequency = ?
λ = wavelength = 6.63 x 10⁻⁷ meter
c = speed of light in vacuum = 3.0 x 10⁸ meters/s
Answer:
39.2 L at STP
Explanation:
Convert the grams to moles first by dividing 56.0 by the molar mass of O2 (32.0) then convert to volume by multiplying by 22.4.
= 39.2 L