<span>E = mCdT
E = energy, m = mass, C = specific heat capacity, dT = change in temperature.
526 = 0.074C x 17
E = 0.074C x 55
Divide the equations
E/526 = (0.074C x 55)/(0.074C x 17) = 55/17
E = (55 x 526)/17 = 1702 J</span>
a person running a car parked in a driveway
Explanation:
A person running a car parked in a driveway is an example of translational kinetic energy.
Translational motion is the movement of body along a straight path.
Translational kinetic energy refers to the energy of a body moving along a straight path.
- It is function of the mass and velocity of the moving body.
- The motion of train on its track is an example of this form of energy
- A fired bullet, falling object all experience translational kinetic energy.
learn more:
Translational kinetic energy brainly.com/question/9924094
#learnwithBrainly
Mineral resources are solid, crystalline substances made inside the Earth. These include granite, marble, limestone and precious stones which are used for jewellery. Minerals are used to make all sorts of different things which we use every day. Energy resources are things we can use to turn into electrical power.
The overall reaction is given by:

The fast step reaction is given as:

The slow step reaction is given as:
(slow step
)
Now, the expression for the rate of reaction of fast reaction is:
![r_{1}=k_{1}[NO][Br_{2}]-k_{-1}[NOBr_{2}]](https://tex.z-dn.net/?f=r_%7B1%7D%3Dk_%7B1%7D%5BNO%5D%5BBr_%7B2%7D%5D-k_%7B-1%7D%5BNOBr_%7B2%7D%5D)
The expression for the rate of reaction of slow reaction is:
Slow step is the rate determining step. Thus, the overall rate of formation is the rate of formation of slow reaction as
takes place in this reaction.
The expression of rate of formation is:

=
(1)
Now, consider that the fast step is always is in equilibrium. Therefore, 
![k_{1}[NO][Br_{2}]= k_{-1}[NOBr_{2}]](https://tex.z-dn.net/?f=k_%7B1%7D%5BNO%5D%5BBr_%7B2%7D%5D%3D%20k_%7B-1%7D%5BNOBr_%7B2%7D%5D)
![[NOBr_{2}] = \frac{k_{1}}{k_{-1}}[NO][Br_{2}]](https://tex.z-dn.net/?f=%5BNOBr_%7B2%7D%5D%20%3D%20%5Cfrac%7Bk_%7B1%7D%7D%7Bk_%7B-1%7D%7D%5BNO%5D%5BBr_%7B2%7D%5D)
Substitute the value of
in equation (1), we get:
![\frac{d(NOBr)}{dt}=k_{2}[NOBr_{2}][NO]](https://tex.z-dn.net/?f=%5Cfrac%7Bd%28NOBr%29%7D%7Bdt%7D%3Dk_%7B2%7D%5BNOBr_%7B2%7D%5D%5BNO%5D)
=![k_{2} \frac{k_{1}}{k_{-1}}[NO][Br_{2}][NO]](https://tex.z-dn.net/?f=k_%7B2%7D%20%5Cfrac%7Bk_%7B1%7D%7D%7Bk_%7B-1%7D%7D%5BNO%5D%5BBr_%7B2%7D%5D%5BNO%5D)
= ![\frac{k_{1}k_{2}}{k_{-1}}[NO]^{2}[Br_{2}]](https://tex.z-dn.net/?f=%5Cfrac%7Bk_%7B1%7Dk_%7B2%7D%7D%7Bk_%7B-1%7D%7D%5BNO%5D%5E%7B2%7D%5BBr_%7B2%7D%5D)
Thus, rate law of formation of
in terms of reactants is given by
.
Answer:
Fluids (air/water) either as water vapour or oxygen and carbon dioxide.
Explanation:
Heat transfer occurs through conduction, convection or radiation.
Many aties, this involves fluids whose molecules have been activated by heated by heat, moving from hotter to cooler regions, allowing for heating or cooling of the rooms.
Building materials have varying conductivity.