Answer:
The correct option is;
The graduate cylinder with more water has more thermal energy because it is holding more water molecules
Explanation:
Given that the thermal energy of the system is the energy possessed by the system by virtue of the increased motion of the particles by virtue of a transfer of heat, when the content of the system is heated
The thermal energy, Q is given by the following equation;
Q = Mass, m × The specific heat capacity, C × The change in temperature, ΔT
Given that the graduated cylinder with more water has more mass and therefore, more water molecules, than the cylinder with less water, the cylinder with more water has more thermal energy.
The equation to be used is the derived formulas for rectilinear motion at a constant acceleration. The formula for acceleration is
a = (v - v₀)/t
where
v and v₀ are the initial and final velocities, respectively
t is the time
a is the acceleration
Since it started from rest, v₀ = 0. Using the formula:
0.15 m/s² = (v - 0)/[2 minutes*(60 s/1 min)]
Solving for v,
v = 18 m/s
Mass of the object is given as

now the speed of object is given as

here we know that


now we will have

now we will have kinetic energy of the object as



now the power is defined as rate of energy
so here we can find power as


so above is the power used for the object
Answer:
162.8 K
Explanation:
initial current = io
final current, i = io/8
Let the potential difference is V.
coefficient of resistivity, α = 43 x 10^-3 /K
Let the resistance is R and the final resistance is Ro.
The resistance varies with temperature
R = Ro ( 1 + α ΔT)
V/i = V/io (1 + α ΔT )
8 = 1 + 43 x 10^-3 x ΔT
7 = 43 x 10^-3 x ΔT
ΔT = 162.8 K
Thus, the rise in temperature is 162.8 K.
Answer:
2.87 km/s
Explanation:
radius of planet, R = 1.74 x 10^6 m
Mass of planet, M = 7.35 x 10^22 kg
height, h = 2.55 x 10^6 m
G = 6.67 x 106-11 Nm^2/kg^2
Use teh formula for acceleration due to gravity


g = 1.62 m/s^2
initial velocity, u = ?, h = 2.55 x 10^6 m , final velocity, v = 0
Use third equation of motion

0 = v² - 2 x 1.62 x 2.55 x 10^6
v² = 8262000
v = 2874.37 m/s
v = 2.87 km/s
Thus, the initial speed should be 2.87 km/s.