The boat is initially at equilibrium since it seems to start off at a constant speed of 5.5 m/s. If the wind applies a force of 950 N, then it is applying an acceleration <em>a</em> of
950 N = (2300 kg) <em>a</em>
<em>a</em> = (950 N) / (2300 kg)
<em>a</em> ≈ 0.413 m/s²
Take east to be positive and west to be negative, so that the boat has an initial velocity of -5.5 m/s. Then after 11.5 s, the boat will attain a velocity of
<em>v</em> = -5.5 m/s + <em>a</em> (11.5 s)
<em>v</em> = -0.75 m/s
which means the wind slows the boat down to a velocity of 0.75 m/s westward.
W=mgh W=(20)(9.8)(1) w=196J
Explanation: The first one
Source: it literally has fusion in the name
Answer: The correct answer is option (A).
Explanation
Ampacity is defined as the maximum amount of the current carried by the conductor continuously without exceeding its temperature rating.
The ampacity of the wire of the heater is 30 A .And this means that wire is capable of conducting current of maximum amount of 30 Ampere through it without exceeding its temperature rating.
Hence, the correct answer is option is (A).
The ratio of the distance moved by the point at which the effort is applied in a simple machine to the distance moved by the point at which the load is applied, in the same time. In the case of an ideal (frictionless and weightless) machine, velocity ratio = mechanical advantage. Velocity ratio is sometimes called distance ratio.