Answer:
Explanation:
I will GUESS that we're supposed to be looking at a plot of a position in time.
IF that is the case.
THEN the answer would be Point B because it has the steepest slope.
Hello There!
From what i know, gravitational force increases if the mass is increased.
If the mass is being decreased, then i assume it will be B. Decreases.
Hope This Helps You!
Good Luck :)
- Hannah ❤
Answer:
Magnetic field, B = 0.199 T
Explanation:
It is given that,
Radius of circular loop, r = 11.7 cm = 0.117 m
Magnetic flux through the loop, 
The magnetic flux linked through the loop is :


Here, 

or


B = 0.199 T
So, the strength of the magnetic field is 0.199 T. Hence, this is the required solution.
Answer:
As a pendulum moves toward the equilibrium position, velocity increases and acceleration decreases. As the pendulum moves away from the equilibrium position, velocity decreases and acceleration increases.
Explanation:
Using the law of conservation of energy, we know that Em1=Em2.
Em1 (at the highest point) = Eg + Ek, where Ek is 0
Em2 (at the equilibrium point) = Eg +Ek, where Eg is 0
This makes sense. At the highest point, the pendulum is at its maximum height. At this point, however, it stops moving, so its velocity is 0. At the equilibrium point, the pendulum is at its lowest height (i.e. h=0). At this point, however, its moving at its maximum velocity. This velocity is constant, which means that acceleration is 0.
Hey there,
<span>Fnet = m x v² / r = n
</span>
Hope this helps :))
~Top