Mass have no effect for the projectile motion and u want to know the height "h"
first,
find the vertical and horizontal components of velocity
vertical component of velocity = 12 sin 61
horizontal component of velocity = 12 cos 61
now for the vertical motion ;
S = ut + (1/2) at^2
where
s = h
u = initial vertical component of velocity
t = 0.473 s
a = gravitational deceleration (-g) = -9.8 m/s^2
h=[12×sin 610×0.473]+[−9.8×(0.473)2]
u can simplify this and u will get the answer
h=.5Gt2
H=1.09m

Where r is the radius of balloon.
Here mass of woman = 68 kg
Mass of air displaced by a balloon with volume V = 1.29*V
Mass of helium inside balloon = 0.178*V
Total mass to be lifted by balloon = 68 +0.178*V
Buoyant force = 1.29V-0.178V=1.112V
So we have 1.112 V = 68+ 0.178*V
0.934 V = 68
V = 72.81 
\frac{4}{3} \pi r^{3}[/tex]= 72.81
r = 2.59 m
So radius of helium balloon = 2.59 m
Answer:
3099 J
Explanation:
The increase in thermal energy corresponds to the mechanical energy lost in the process.
The mechanical energy is given by the sum of gravitational potential energy and kinetic energy of the fireman:

At the top of the pole, the fireman has no kinetic energy, so all his mechanical energy is just potential energy:

When the fireman reaches the bottom, he has no gravitational potential energy, so his mechanical energy is just given by his kinetic energy:

So, the loss in mechanical energy was

and this corresponds to the increase in thermal energy.