The value of normal force as the slider passes point B is
The value of h when the normal force is zero
<h3>How to solve for the normal force</h3>
The normal force is calculated using the work energy principle which is applied as below
K₁ + U₁ = K₂
k represents kinetic energy
U represents potential energy
the subscripts 1,2 , and 3 = a, b, and c
for 1 to 2
K₁ + W₁ = K₂
0 + mg(h + R) = 0.5mv²₂
g(h + R) = 0.5v²₂
v²₂ = 2g(1.5R + R)
v²₂ = 2g(2.5R)
v²₂ = 5gR
Using summation of forces at B
Normal force, N = ma + mg
N = m(a + g)
N = m(v²₂/R + g)
N = m(5gR/R + g)
N = 6mg
for 1 to 3
K₁ + W₁ = K₃ + W₃
0 + mgh = 0.5mv²₃ + mgR
gh = 0.5v²₃ + gR
0.5v²₃ = gh - gR
v²₃ = 2g(h - R)
at C
for normal force to be zero
ma = mg
v²₃/R = g
v²₃ = gR
and v²₃ = 2g(h - R)
gR = 2gh - 2gR
gR + 2gR = 2gh
3gR = 2gh
3R/2 = h
Learn more about normal force at:
brainly.com/question/20432136
#SPJ1
Answer:
W = 0.060 J
v_2 = 0.18 m/s
Explanation:
solution:
for the spring:
W = 1/2*k*x_1^2 - 1/2*k*x_2^2
x_1 = -0.025 m and x_2 = 0
W = 1/2*k*x_1^2 = 1/2*(250 N/m)(-0.028m)^2
W = 0.060 J
the work-energy theorem,
W_tot = K_2 - K_1 = ΔK
with K = 1/2*m*v^2
v_2 = √2*W/m
v_2 = 0.18 m/s
The answer is emagination emagination
Explanation:
For a circular orbit v=
with G = 6.6742 × 
Given m = 6.42 x 10^23 kg and r=9.38 x 10^6 m
=> v = 2137.3 m/s
I hope this is the correct way to solve
In a collision, there is a force on both objects that causes an acceleration of both objects; the forces are equal in magnitude and opposite in direction. For collisions between equal-mass objects, each object experiences the same acceleration.