Answer:
A.) you multiply the 3 and 2
Answer:
![\theta=k\pi, \hspace{3}k\in Z\\\\ or\\\theta =2\pi k \pm arccos(\frac{1 }{8} ), \hspace{3}k\in Z\\](https://tex.z-dn.net/?f=%5Ctheta%3Dk%5Cpi%2C%20%5Chspace%7B3%7Dk%5Cin%20Z%5C%5C%5C%5C%20or%5C%5C%5Ctheta%20%3D2%5Cpi%20k%20%5Cpm%20arccos%28%5Cfrac%7B1%20%7D%7B8%7D%20%29%2C%20%5Chspace%7B3%7Dk%5Cin%20Z%5C%5C)
Step-by-step explanation:
Factor constant terms:
![-2(-4sin(2\theta)+sin(\theta))=0](https://tex.z-dn.net/?f=-2%28-4sin%282%5Ctheta%29%2Bsin%28%5Ctheta%29%29%3D0)
Divide both sides by -2:
![sin(\theta)-4sin(2 \theta)=0](https://tex.z-dn.net/?f=sin%28%5Ctheta%29-4sin%282%20%5Ctheta%29%3D0)
Expand trigonometric functions using the fact:
![sin(2 \theta) =2 sin(\theta) cos(\theta)](https://tex.z-dn.net/?f=sin%282%20%5Ctheta%29%20%3D2%20sin%28%5Ctheta%29%20cos%28%5Ctheta%29)
So:
![sin(\theta) -8sin(\theta)cos(\theta)=0](https://tex.z-dn.net/?f=sin%28%5Ctheta%29%20-8sin%28%5Ctheta%29cos%28%5Ctheta%29%3D0)
Factor sin(x) and constant terms and multiply both sides by -1:
![sin(\theta) (8cos(\theta)-1)=0](https://tex.z-dn.net/?f=sin%28%5Ctheta%29%20%288cos%28%5Ctheta%29-1%29%3D0)
Split into two equations:
![(1)=8cos(\theta)-1=0\\\\(2)=sin(\theta)=0](https://tex.z-dn.net/?f=%281%29%3D8cos%28%5Ctheta%29-1%3D0%5C%5C%5C%5C%282%29%3Dsin%28%5Ctheta%29%3D0)
For (1)
Add 1 to both sides and divide both sides by 8:
![cos(\theta)=\frac{1}{8}](https://tex.z-dn.net/?f=cos%28%5Ctheta%29%3D%5Cfrac%7B1%7D%7B8%7D)
Take the inverse cosine of both sides:
![\theta =2\pi k \pm arccos(\frac{1 }{8} ), \hspace{3}k\in Z](https://tex.z-dn.net/?f=%5Ctheta%20%3D2%5Cpi%20k%20%5Cpm%20arccos%28%5Cfrac%7B1%20%7D%7B8%7D%20%29%2C%20%5Chspace%7B3%7Dk%5Cin%20Z)
For (2)
Simply take the inverse sine of both sides
![\theta = k \pi, \hspace{3}k\in Z](https://tex.z-dn.net/?f=%5Ctheta%20%3D%20k%20%5Cpi%2C%20%5Chspace%7B3%7Dk%5Cin%20Z)
Therefore, the solutions are given by:
![\theta=k\pi, \hspace{3}k\in Z\\\\ or\\ \theta =2\pi k \pm arccos(\frac{1 }{8} ), \hspace{3}k\in Z\\](https://tex.z-dn.net/?f=%5Ctheta%3Dk%5Cpi%2C%20%5Chspace%7B3%7Dk%5Cin%20Z%5C%5C%5C%5C%20or%5C%5C%20%5Ctheta%20%3D2%5Cpi%20k%20%5Cpm%20arccos%28%5Cfrac%7B1%20%7D%7B8%7D%20%29%2C%20%5Chspace%7B3%7Dk%5Cin%20Z%5C%5C)
Answer:
A property of a function is that it gives one output for an input
if a function gives one output for an input, it is a function and otherwise it is not a function otherwise
here, we can see that we have 2 outputs for the input '6'. therefore, it is NOT a function
Answer:
i think ur answer is a im not 100 percent sure let me know if im wrong
Step-by-step explanation: