C. when the circuit is closed
Answer:
which is necessary to keep the building warm. Light colors reflect the light hence they are wisely used in tropical ...
Here in the US, not all houses are painted dark colors. In years past, it was common for the ...
Answer:
B) (-2.0 m, 0.0 m)
Explanation:
Given:
Mass of particle 1 is, 
Mass of particle 2 is, 
Position of center of mass is, 
Position of particle 1 is, 
Position of particle 2 is, 
We know that, the x-coordinate of center of mass of two particles is given as:

Plug in the values given.

We know that, the y-coordinate of center of mass of two particles is given as:

Plug in the values given.

Therefore, the position of particle 2 of mass 3.0 kg is (-2.0 m, 0.0 m).
So, option (B) is correct.
We must remember that the total net force equation at
constant velocity is:
<span>F – Ff = 0</span>
of
F - µN = 0
Using Newton's 2nd Law of Motion:<span>
F = m a
<span>Where,
F = net force acting on the body
m = mass of the body
a = acceleration of the body
Since the cart is moving at a constant velocity, then
acceleration is zero, hence the working equation simplifies to
F = net Force = 0
Therefore,
F - µN = 0
where
µ = coefficient of friction = 0.20
N = normal force acting on the cart = 12 N
Therefore,
F - 0.20(12) = 0
<span>
F = 2.4 N </span></span></span>
It's hard to tell exactly what's happening in that 110 cm that you marked over the wave. What is under the ends of the long arrow ? How many complete waves ? I counted 4.5 complete waves ... maybe ?
If there are 4.5 complete waves in 110cm, then the length of 1 wave is (110/4.5)=24.44cm.
Frequency = speed/wavelength
Frequency = 2m/s /0.2444m
Frequency = 8.18 Hz