I think that mechanism is called a <em>"lens turret"</em>.
We would need to know how long it took to do the work.
Power = (work) / (time).
<span>Cells may appear inactive during this stage, but they are quite the opposite. This is the longest period of the complete cell cycle during which DNA replicates, the centrioles divide, and proteins are actively produced. </span>
I do not have that one but i think you can download that in the internet.
<h2>
Answer:</h2>
If you triple the charge, the electric potential is 3V.
<h2>
Explanation:</h2>
If you triple the charge, the electric potential is 3V. Put another way, the value of the electric potential at the same location is tripled if the strength of the charge is tripled.
<em>But why this is true?</em>
Well, the potential V due to a single point charge q is:

If the strength of the charge is tripled means that our new q1=3q, therefore:


So you can see that in fact if you triple the charge, the electric potential is 3V.