Answer:
Explanation:
Solar energy production encompasses several power sources, both passive and active. It’s important to differentiate among the different types of solar energy production systems since it’s not uncommon for the average homeowner to confuse them. We’ll start with a diagram of solar energy hitting the earth surface.
Then we’ll present diagrams and discuss photovoltaic solar, solar hot water, and concentrated solar power. The easiest way to think about these is: am I using solar energy to heat water (solar hot water and CSP) or am I converting sunlight directly into electricity (photovoltaic cells)?
Well, let's take it the other way. If you have a rather low voltage (220 volts -- Europe -- is low) you'd get a high current, which more easily dissipates as heat, resulting in loss of energy. Using a high voltage you have a low current which could easily be transported with almost no loss.
Explanation:
C. neutron.
it does not contain ionizing characteristics.
hope it helps. :)
Formula for acceleration: A=Force/Mass
A=F/M
A=80N/4.5kg
A=17.7 m/s^2
Unit for A is meters per second (m/s^2)
Hope this helps :)
The temperature of the early solar system explains why the inner planets are rocky and the outer ones are gaseous. As the gases coalesced to form a protosun, the temperature in the solar system rose. In the inner solar system temperatures were as high as 2000 K, while in the outer solar system it was as cool as 50 K. In the inner solar system, only substances with very high melting points would have remained solid. All the rest would have vaoprized. So the inner solar system objects are made of iron, silicon, magnesium, sulfer, aluminum, calcium and nickel. Many of these were present in compounds with oxygen. There were relatively few elements of any other kind in a solid state to form the inner planets. The inner planets are much smaller than the outer planets and because of this have relatively low gravity and were not able to attract large amounts of gas to their atmospheres. In the outer regions of the solar system where it was cooler, other elements like water and methane did not vaporize and were able to form the giant planets. These planets were more massive than the inner planets and were able to attract large amounts of hydrogen and helium, which is why they are composed mainly of hydrogen and helium, the most abundant elements in the solar system, and in the universe
https://lco.global/spacebook/planets-and-how-they-formed/
hope it helps