Answer: Current = 2 A
Explanation:
Given that an electrical power plant generates electricity with a
current I = 50 A
Potential difference V = 20 000 V
The resistance R will be achieved by Ohms law formula which state that
V = IR
But the power generated will be the product of potential difference and the current
Power P = IV
P = 50 × 20000
P = 1, 000000 W
When the transformer steps up the potential difference to 500 000 V before it is transmitted
Power is always constant.
Using the formula for power again with
V = 500000
1000000 = 500000× I
Make I the subject of formula
Current I = 1000000/500000
Current I = 2 A
Explanation:
since both the teammates are of the same height, their height won't matter. Because now the basketball won't cover any vertical distance.
We have to calculate its range the horizontal distance covered by it when tossed from one teammate to the other.
range can be calculated by the formula :-

u is the velocity during its take off and
is the angle at which its thrown
Given that
- u = 8m/ s
= 40°
calculating range using the above formula


value of sin 80 = 0. 985



Hence,

Answer:
12.4 m/s²
Explanation:
L = length of the simple pendulum = 53 cm = 0.53 m
n = Number of full swing cycles = 99.0
t = Total time taken = 128 s
T = Time period of the pendulum
g = magnitude of gravitational acceleration on the planet
Time period of the pendulum is given as


T = 1.3 sec
Time period of the pendulum is also given as


g = 12.4 m/s²
If it is s-t graph , point is c
if it is v-t graph , point is e
The equations are analogous to that for linear movement:
acceleration = (final velocity - initial velocity) / time
acceleration = (3000 rpm - 0 rpm) / 2.0 s
a) acceleration = 1500 rpm/s or 25 rp(s^2)
For the displacement
displacement = initial velocity*time + 0.5*acceleration*time^2
displacement = (0)*(2 s) + (0.5)(25 rps^2)*(2 s)^2
b) displacement = 50 revolutions