Answer:
Answer is 183.6 J
Explanation:
Using the Physics reference sheet the formula for Potential energy is
(mass) x (gravity) x (height)
Mass= 1.2
Gravity I used is 9.81 (use 10 to get the answer most schools use)
Height= 15.6
Answer:
He began organizing the known elements according to their atomic weights and chemical properties.
Explanation:
Answer:
128.21 m
Explanation:
The following data were obtained from the question:
Initial temperature (θ₁) = 4 °C
Final temperature (θ₂) = 43 °C
Change in length (ΔL) = 8.5 cm
Coefficient of linear expansion (α) = 17×10¯⁶ K¯¹)
Original length (L₁) =.?
The original length can be obtained as follow:
α = ΔL / L₁(θ₂ – θ₁)
17×10¯⁶ = 8.5 / L₁(43 – 4)
17×10¯⁶ = 8.5 / L₁(39)
17×10¯⁶ = 8.5 / 39L₁
Cross multiply
17×10¯⁶ × 39L₁ = 8.5
6.63×10¯⁴ L₁ = 8.5
Divide both side by 6.63×10¯⁴
L₁ = 8.5 / 6.63×10¯⁴
L₁ = 12820.51 cm
Finally, we shall convert 12820.51 cm to metre (m). This can be obtained as follow:
100 cm = 1 m
Therefore,
12820.51 cm = 12820.51 cm × 1 m / 100 cm
12820.51 cm = 128.21 m
Thus, the original length of the wire is 128.21 m
<h2>QUESTION:- It is easier to lift the same load by using three pulley system than by using two-pulley system.</h2>
<h2>ANSWER:- IN CASE OF IDEAL PULLEY SYSTEM</h2>
<h2>REASON:- </h2>
Logic behind is lies behind the mechanical advantage of the provided bt the Pulley system.
as if we calculate the mechanical advantage of the 2 Pulley system we will have the value 2
And if we will calculate the mechanical advantage of the 3 pulley system then we will get the value of 3
so due to extra mechanical advantage we feel it easy to move with 3 pulley system then 2 Pulley system

Answer:
(A) Q = 321.1C (B) I = 42.8A
Explanation:
(a)Given I = 55A−(0.65A/s2)t²
I = dQ/dt
dQ = I×dt
To get an expression for Q we integrate with respect to t.
So Q = ∫I×dt =∫[55−(0.65)t²]dt
Q = [55t – 0.65/3×t³]
Q between t=0 and t= 7.5s
Q = [55×(7.5 – 0) – 0.65/3(7.5³– 0³)]
Q = 321.1C
(b) For a constant current I in the same time interval
I = Q/t = 321.1/7.5 = 42.8A.