1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
trapecia [35]
4 years ago
13

A chair is pushed forward with a force of 185 N. The gravitational force of earth on the chair is 155 N downward. The force of f

riction acting on the chair is 55 N. Draw a free-body diagram showing all forces acting on the chair. Determine the magnitude of any missing force values AND determine the net force acting on the chair.

Physics
2 answers:
zhenek [66]4 years ago
7 0

The net force on the chair is 100N

<u>Explanation:</u>

The free body diagram is attached below.

According to the condition,

when a downward gravitational force of 155N of earth acts then an equal opposite upward force of same magnitude also acts on the chair.

Therefore, the normal force acting on the chair is 155N

When a chair is pushed forward on a surface, then a frictional force also acts on it in opposite direction.

The net force acting on the chair is = F - f

Where,

F is the applied force

f is the force of friction

Net force = 155N - 55N

Fnet = 100N

Therefore, net force on the chair is 100N

andreyandreev [35.5K]4 years ago
5 0

Answer:

100 N

Explanation:

Me big brain

You might be interested in
Holes drilled several kilometers into Earth’s crust provide direct evidence about Earth’s interior in the form of
ivanzaharov [21]
C I hope this helps cccccccccccccccccccc
6 0
3 years ago
Read 2 more answers
What relationship between the sun and earth did copernicus formulate?
Dmitrij [34]

Answer:

The astronomical model created and published by Nicholas Copernicus in the year 1543 is called Copernican heliocentrism. The model set the Sun in immobile position near the center of the solar system with Earth, as well as the other planets, spherical, epicycled and at consistent frequencies around it.

5 0
4 years ago
The distance from earth to mars ranges between 780,000,000 km and 380,000,000 km depending on the time of the year. The speed of
ivann1987 [24]

Answer:

The minimum time, t = 21.11 m

Explanation:

Given,

The maximum distance between the Earth and Mars, d = 780,000,000 km

The maximum distance between the Earth and Mars, d = 780,000,000 km

The speed of the light, c = 300,000 km/s

The distance and speed of the object is related using the formula,

                           v = d / t

                            t = d / v

The minimum time it takes for data transmission is when the distance between the Mars and the Earth is at minimum.

Therefore,

                            t = 380,000,000 km / 300,000 km/s

                              = 1266.67 s

                              = 21.11 minutes

Hence, the minimum time it takes for data transmitted by the Mars Surveyor to reach earth, t = 21.11 minutes

6 0
3 years ago
Explain the following defects of a simple electric cell:
eimsori [14]

Answer:

Explanation:

The two major defects of simple electric cells causes current supplied to be for short time. These defects are: polarization and local action.

a. Polarization: This is a defect caused by an accumulation of hydrogen bubbles at the positive electrode of the cell. It can be prevented by the use of vent, using a hydrogen absorbing material or the use of a depolarizer.

b. Local Action: This is the gradual wearing away of the electrode due to impurities in the zinc plate. It can be controlled by the amalgamation of the zinc plate before it is used.

4 0
3 years ago
A man is standing on a weighing machine on a ship which is bobbing up and down with simple harmonic motion of period T=15.0s.Ass
STALIN [3.7K]

Well, first of all, one who is sufficiently educated to deal with solving
this exercise is also sufficiently well informed to know that a weighing
machine, or "scale", should not be calibrated in units of "kg" ... a unit
of mass, not force.  We know that the man's mass doesn't change,
and the spectre of a readout in kg that is oscillating is totally bogus.

If the mass of the man standing on the weighing machine is 60kg, then
on level, dry land on Earth, or on the deck of a ship in calm seas on Earth,
the weighing machine will display his weight as  588 newtons  or as 
132.3 pounds.  That's also the reading as the deck of the ship executes
simple harmonic motion, at the points where the vertical acceleration is zero.

If the deck of the ship is bobbing vertically in simple harmonic motion with
amplitude of M and period of 15 sec, then its vertical position is 

                                     y(t) = y₀ + M sin(2π t/15) .

The vertical speed of the deck is     y'(t) = M (2π/15) cos(2π t/15)

and its vertical acceleration is          y''(t) = - (2πM/15) (2π/15) sin(2π t/15)

                                                                = - (4 π² M / 15²)  sin(2π t/15)

                                                                = - 0.1755 M sin(2π t/15) .

There's the important number ... the  0.1755 M.
That's the peak acceleration.
From here, the problem is a piece-o-cake.

The net vertical force on the intrepid sailor ... the guy standing on the
bathroom scale out on the deck of the ship that's "bobbing" on the
high seas ... is (the force of gravity) + (the force causing him to 'bob'
harmonically with peak acceleration of  0.1755 x amplitude).

At the instant of peak acceleration, the weighing machine thinks that
the load upon it is a mass of  65kg, when in reality it's only  60kg.
The weight of 60kg = 588 newtons.
The weight of 65kg = 637 newtons.
The scale has to push on him with an extra (637 - 588) = 49 newtons
in order to accelerate him faster than gravity.

Now I'm going to wave my hands in the air a bit:

Apparent weight = (apparent mass) x (real acceleration of gravity)

(Apparent mass) = (65/60) = 1.08333 x real mass.

Apparent 'gravity' = 1.08333 x real acceleration of gravity.

The increase ... the 0.08333 ... is the 'extra' acceleration that's due to
the bobbing of the deck.

                        0.08333 G  =  0.1755 M

The 'M' is what we need to find.

Divide each side by  0.1755 :          M = (0.08333 / 0.1755) G

'G' = 9.0 m/s²
                                       M = (0.08333 / 0.1755) (9.8) =  4.65 meters .

That result fills me with an overwhelming sense of no-confidence.
But I'm in my office, supposedly working, so I must leave it to others
to analyze my work and point out its many flaws.
In any case, my conscience is clear ... I do feel that I've put in a good
5-points-worth of work on this problem, even if the answer is wrong .

8 0
3 years ago
Other questions:
  • A piece of wood is floating in a bathtub. A second piece of wood sits on top of the first piece, and does not touch the water. I
    11·1 answer
  • STATE THE HOOKE'S LAW
    6·2 answers
  • Cheryl has a mug that she says is made up of matter. Heather says that the hot chocolate inside the cup is made up of matter, to
    6·1 answer
  • n airplane flying at a distance of 89.43 km from a radio transmitter receives a signal of intensity 59.44 μW/m2. What is the amp
    6·1 answer
  • A person pulls a bucket of water up from a well with a rope. Assume the initial and final speeds of the bucket are zero (Vi-Vf-0
    5·1 answer
  • Examine the scenario. Object A has 5 protons and 5 electrons. Object B has 5 protons and 7 electrons. Which option most accurate
    12·1 answer
  • Half-Life refers to radiation levels<br> true or false
    7·1 answer
  • Which statement is true about vectors? a. All quantities in physics are not vectors. b. A vector may have either magnitude or di
    9·1 answer
  • What does it mean for their to be a net force on an object vs no net force? Which one is described as balanced forces and which
    5·1 answer
  • When you push an object, it pushes back with an equal and opposite force
    9·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!