1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Savatey [412]
3 years ago
15

Using the product property of square roots what is the square root of 28 and 150

Mathematics
1 answer:
Svetllana [295]3 years ago
3 0
I assume you need find out √28=√7*4=2√7
√150=√5*5*6=5√6
hope it helps
You might be interested in
Can someone check whether its correct or no? this is supposed to be the steps in integration by parts​
Gwar [14]

Answer:

\displaystyle - \int \dfrac{\sin(2x)}{e^{2x}}\: \text{d}x=\dfrac{\sin(2x)}{4e^{2x}}+\dfrac{\cos(2x)}{4e^{2x}}+\text{C}

Step-by-step explanation:

\boxed{\begin{minipage}{5 cm}\underline{Integration by parts} \\\\$\displaystyle \int u \dfrac{\text{d}v}{\text{d}x}\:\text{d}x=uv-\int v\: \dfrac{\text{d}u}{\text{d}x}\:\text{d}x$ \\ \end{minipage}}

Given integral:

\displaystyle -\int \dfrac{\sin(2x)}{e^{2x}}\:\text{d}x

\textsf{Rewrite }\dfrac{1}{e^{2x}} \textsf{ as }e^{-2x} \textsf{ and bring the negative inside the integral}:

\implies \displaystyle \int -e^{-2x}\sin(2x)\:\text{d}x

Using <u>integration by parts</u>:

\textsf{Let }\:u=\sin (2x) \implies \dfrac{\text{d}u}{\text{d}x}=2 \cos (2x)

\textsf{Let }\:\dfrac{\text{d}v}{\text{d}x}=-e^{-2x} \implies v=\dfrac{1}{2}e^{-2x}

Therefore:

\begin{aligned}\implies \displaystyle -\int e^{-2x}\sin(2x)\:\text{d}x & =\dfrac{1}{2}e^{-2x}\sin (2x)- \int \dfrac{1}{2}e^{-2x} \cdot 2 \cos (2x)\:\text{d}x\\\\& =\dfrac{1}{2}e^{-2x}\sin (2x)- \int e^{-2x} \cos (2x)\:\text{d}x\end{aligned}

\displaystyle \textsf{For }\:-\int e^{-2x} \cos (2x)\:\text{d}x \quad \textsf{integrate by parts}:

\textsf{Let }\:u=\cos(2x) \implies \dfrac{\text{d}u}{\text{d}x}=-2 \sin(2x)

\textsf{Let }\:\dfrac{\text{d}v}{\text{d}x}=-e^{-2x} \implies v=\dfrac{1}{2}e^{-2x}

\begin{aligned}\implies \displaystyle -\int e^{-2x}\cos(2x)\:\text{d}x & =\dfrac{1}{2}e^{-2x}\cos(2x)- \int \dfrac{1}{2}e^{-2x} \cdot -2 \sin(2x)\:\text{d}x\\\\& =\dfrac{1}{2}e^{-2x}\cos(2x)+ \int e^{-2x} \sin(2x)\:\text{d}x\end{aligned}

Therefore:

\implies \displaystyle -\int e^{-2x}\sin(2x)\:\text{d}x =\dfrac{1}{2}e^{-2x}\sin (2x) +\dfrac{1}{2}e^{-2x}\cos(2x)+ \int e^{-2x} \sin(2x)\:\text{d}x

\textsf{Subtract }\: \displaystyle \int e^{-2x}\sin(2x)\:\text{d}x \quad \textsf{from both sides and add the constant C}:

\implies \displaystyle -2\int e^{-2x}\sin(2x)\:\text{d}x =\dfrac{1}{2}e^{-2x}\sin (2x) +\dfrac{1}{2}e^{-2x}\cos(2x)+\text{C}

Divide both sides by 2:

\implies \displaystyle -\int e^{-2x}\sin(2x)\:\text{d}x =\dfrac{1}{4}e^{-2x}\sin (2x) +\dfrac{1}{4}e^{-2x}\cos(2x)+\text{C}

Rewrite in the same format as the given integral:

\displaystyle \implies - \int \dfrac{\sin(2x)}{e^{2x}}\: \text{d}x=\dfrac{\sin(2x)}{4e^{2x}}+\dfrac{\cos(2x)}{4e^{2x}}+\text{C}

5 0
2 years ago
Fill in the missing information for each rectangle in the table below
Tcecarenko [31]

Answer:

Fill in the missing information for each rectangle in the table below

Step-by-step explanation:

salamat sa points

6 0
2 years ago
Read 2 more answers
a small plane lands at a point 324 miles east and 92 miles north of the point at which it took off. Find the distance the plane
Setler79 [48]

Answer: 336.80 miles, 15.85^{\circ} North of east

Step-by-step explanation:

Given

Plane lands at a point 324 miles east and 92 miles north

Distance is given by using Pythagoras theorem

\Rightarrow d=\sqrt{324^2+92^2}\\\\\Rightarrow d=\sqrt{113,440}\\\\\Rightarrow d=336.80\ \text{miles}

Direction is given by using figure i.e.

\Rightarrow \tan \theta=\dfrac{92}{324}\\\\\Rightarrow \tan \theta=0.2839\\\\\Rightarrow \theta=15.85^{\circ}

Direction is 15.85^{\circ} North of east

7 0
2 years ago
Helllllllpppppppp Plllleeeeaaase I have a test!!!!
Tresset [83]
Do you still need it
3 0
3 years ago
How many solutions will there be to the following equation?16x^2=100
djverab [1.8K]

Answer:

2 solutions; x=2.5     x=-25

Step-by-step explanation:

16x^2 = 100

x^2 = 100/16

x^2 = 6.25

x = (+-) sqrt 6.25

x = (+-) 2.5

4 0
3 years ago
Other questions:
  • Simplify the expression. 9n - 3n + 5.
    8·2 answers
  • The table below shows two equations
    9·1 answer
  • The equation of a line is y = -3x. To which equation is the line parallel to? A. Y = 1 third x minus 4 B. Y = 3x + 10 C. Y = -10
    5·1 answer
  • What would be a good way to explain the steps to solve this equation?
    8·2 answers
  • Help me with math homework please? :)
    13·2 answers
  • The product of 3 and y decreased by 7
    6·1 answer
  • La suma de dos números es 135 y su diferencia 37, hallar los dos números
    13·1 answer
  • Which expression is equivalent to |a|≤5 ?
    12·2 answers
  • The volume of 10 drops of a liquid is 0.01 fluid ounces.<br> What is the volume of 10,000 drops ?
    14·1 answer
  • PLSSSSS HELP ME<br><br><br><br> X+18+2x+17=17
    10·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!