Answer:
<em>No, a rigid body cannot experience any acceleration when the resultant force acting on the body is zero.</em>
Explanation:
If the net force on a body is zero, then it means that all the forces acting on the body are balanced and cancel out one another. This sate of equilibrium can be static equilibrium (like that of a rigid body), or dynamic equilibrium (that of a car moving with constant velocity)
For a body under this type of equilibrium,
ΣF = 0 ...1
where ΣF is the resultant force (total effective force due to all the forces acting on the body)
For a body to accelerate, there must be a force acting on it. The acceleration of a body is proportional to the force applied, for a constant mass of the body. The relationship between the net force and mass is given as
ΣF = ma ...2
where m is the mass of the body
a is the acceleration of the body
Substituting equation 2 into equation 1, we have
0 = ma
therefore,
a = 0
this means that<em> if the resultant force acting on a rigid body is zero, then there won't be any force available to produce acceleration on the body.</em>
<em></em>
Answer:
note:
<u>solution is attached in word form due to error in mathematical equation. furthermore i also attach Screenshot of solution in word due to different version of MS Office please find the attachment</u>
A bell or a siren or a ring in somewhere