<span>because in any atom the electrons are in the outer orbitals while protons are within the nucleus together with the neutrons. If energy is supplied electrons can jump to higher energy levels and leave the lower orbitals.
Especially in metals the conduction band is partially filled at room temperature with allows free flow of electrons throughout the metal thus they carry charge.
(it requires huge amounts of energy to remove a proton from the nucleus such things happen on the surface of sun).</span><span>
</span>
Answer:
2.2 m/s^2
Explanation:
Acceleration = Force / Mass
= 7.92 / 3.6 = 2.2m/s^2
Hope this help you :3
Acceleration x time = velocity
Since you're given acceleration and time, just plug the values into the equation.
3

x 1.1 s = ?
Solve that equation, and remember your velocity should be in m/s.
(a) The velocity (in m/s) of the rock after 1 second is 11.28 m/s.
(b) The velocity of the rock after 2 seconds is 7.56 m/s.
(c) The time for the block to hit the surface is 4.03.
(d) The velocity of the block at the maximum height is 0.
<h3>
Velocity of the rock</h3>
The velocity of the rock is determined as shown below;
Height of the rock after 1 second; H(t) = 15(1) - 1.86(1)² = 13.14 m
v² = u² - 2gh
where;
- g is acceleration due to gravity in mars = 3.72 m/s²
v² = (15)² - 2(3.72)(13.14)
v² = 127.23
v = √127.23
v = 11.28 m/s
<h3>Velocity of the rock when t = 2 second</h3>
v = dh/dt
v = 15 - 3.72t
v(2) = 15 - 3.72(2)
v(2) = 7.56 m/s
<h3>Time for the rock to reach maximum height</h3>
dh/dt = 0
15 - 3.72t = 0
t = 4.03 s
<h3>Velocity of the rock when it hits the surface</h3>
v = u - gt
v = 15 - 3.72(4.03)
v = 0
Learn more about velocity at maximum height here: brainly.com/question/14638187