Hello!
Use the formula:
M = k * p
Data:
M = Mechanic energy
k = Kinetic energy
p = Potencial energy
Descomposing:
M = (0,5*mv²) + (mgh)
Replacing:
M = (0,5 * 59,6 kg * (23,4 m/s)²) + (59,6 kg * 9,81 m/s² * 44,6 m)
M = 16317,28 J + 26076,54 J
M = 42393,82 J
The mechanic energy is <u>42393,82 Joules.</u>
Answer:
a=0.212 m/s²
Explanation:
Given that
q= 10⁻⁹ C
m = 5 x 10⁻⁹ kg
Magnetic filed ,B= 0.003 T
Speed ,V= 500 m/s
θ= 45°
Lets take acceleration of the mass is a m/s²
The force on the charge due to magnetic filed B
F= q V B sinθ
Also F= m a ( from Newton's law)
By balancing these above two forces
m a= q V B sinθ



a=0.212 m/s²
Answer:
(c) more than 500
Explanation:
Until 2019, more than 3000 planetary systems have been discovered that contain more than 4000 exoplanets, since some of these systems contain multiple planets. Most known extrasolar planets are gas giants equal to or more massive than the planet Jupiter, with orbits very close to its star.
Answer:
Energy consumed by the electric kettle in 9.5 min =Pt=(2.5×10
3
)×(9.5×60)=14.25×10
5
J
Energy usefully consumed =msΔT=3×(4.2×10
3
)×(100−15)=10.71×10
5
where s=4.2J/g
o
C= specific heat of water and boiling point temp=100
o
C
Heat lost =14.25×10
5
−10.71×10
5
=3.54×10
5
Explanation:
'What is the magnitude of the force needed to stop the horses and bring the box into equilibrium?' ≈42N; according to the vectors rules.
'Where would you locate the rope to apply the force?' - in point D.
PS. zoom out the attached picture.