Answer:
The answer is given below
Explanation:
u is the initial velocity, v is the final velocity. Given that:

a)
The final velocity of cart 1 after collision is given as:

The final velocity of cart 2 after collision is given as:

b) Using the law of conservation of energy:

Answer:
0.4778 m/s
Explanation:
To solve this question, we will make use of law of conservation of momentum.
We are given that the rock's velocity is 12 m/s at 35°. Thus, the horizontal component of this velocity is;
V_x = (12 m/s)(cos(35°)) = 9.83 m/s.
Thus, the horizontal component of the rock's momentum is;
(3.5 kg)(9.83 m/s) = 34.405 kg·m/s.
Since the person is not pushed up off the ice or down into it, his momentum will have no vertical component and so his momentum will have the same magnitude as the horizontal component of the rock's momentum.
Thus, to get the person's speed, we know that; momentum = mass x velocity
Mass of person = 72 kg and we have momentum as 34.405 kg·m/s
Thus;
34.405 = 72 x velocity
Velocity = 34.405/72
Velocity = 0.4778 m/s
Because they behave just like all the electromagnetic waves of the spectrum. Same equations, just shorter wavelengths and more energy.
Hope you get it :)
Answer:
When you are performing spike it's most effective to strike the ball from the right or left side at a sharp downward angle. Whether you are spiking the ball from the right or left front position, position yourself behind the 10-foot line (attack line), which is the line that is about four steps away from the net.
Answer:
Time period of the motion will remain the same while the amplitude of the motion will change
Explanation:
As we know that time period of oscillation of spring block system is given as

now we know that
M = mass of the object
k = spring constant
So here we know that the time period is independent of the gravity
while the maximum displacement of the spring from its mean position will depends on the gravity as


so we can say that
Time period of the motion will remain the same while the amplitude of the motion will change