Answer:
0.42 m/s²
Explanation:
r = radius of the flywheel = 0.300 m
w₀ = initial angular speed = 0 rad/s
w = final angular speed = ?
θ = angular displacement = 60 deg = 1.05 rad
α = angular acceleration = 0.6 rad/s²
Using the equation
w² = w₀² + 2 α θ
w² = 0² + 2 (0.6) (1.05)
w = 1.12 rad/s
Tangential acceleration is given as
= r α = (0.300) (0.6) = 0.18 m/s²
Radial acceleration is given as
= r w² = (0.300) (1.12)² = 0.38 m/s²
Magnitude of resultant acceleration is given as


= 0.42 m/s²
Answer:9m
Explanation:
Ball starts from rest . Time taken = 6 seconds. Distance travelled by ball. ∴Distance travelled = 9 m
Hope it helps you
Good luck
Answer:
Magnitude of the force is

direction of the force is given as
West of South
Explanation:
As we know that force is a vector quantity and in order to find the resultant of two or more forces we need to add them vectorialy
So here we have

here we know that first force is of magnitude 2 N towards east

second force is also of 2.0 N due North

now from above equation


so magnitude of the force is given as


direction of the force is given as


West of South
The object with a mass of 100 kg would move slower than the object with a mass of 1 kg. This is because a greater force is required to move the object with a mass of 100 kg compared to the object of 1 kg.
The correct ans is 1.
A changing electric field produces a changing magnetic field which in turn produces a changing electric field. This means that the source has created a changing electric and magnetic fields, perpendicular to each other, that travel away from the source. Electric field, magnetic field and the EM wave are perpendicular to each other. This gives electromagnetic waves their transverse nature.