Answer:
the pressure reading when connected a pressure gauge is 543.44 kPa
Explanation:
Given data
tank volume (V) = 400 L i.e 0.4 m³
temperature (T) = 25°C i.e. 25°C + 273 = 298 K
air mass (m) = 3 kg
atmospheric pressure = 98 kPa
To find out
pressure reading
Solution
we have find out pressure reading by gauge pressure
i.e. gauge pressure = absolute pressure - atmospheric pressure
first we find absolute pressure (p) by the ideal gas condition
i.e pV = mRT
p = mRT / V
p = ( 3 × 0.287 × 298 ) / 0.4
p = 641.44 kPa
so
gauge pressure = absolute pressure - atmospheric pressure
gauge pressure = 641.44 - 98
gauge pressure = 543.44 kPa
Answer:
point_dist = math.sqrt((math.pow(x2 - x1, 2) + math.pow(y2 - y1, 2))
Explanation:
The distance formula is the difference of the x coordinates squared, plus the difference of the y coordinates squared, all square rooted. For the general case, it appears you simply need to change how you have written the code.
point_dist = math.sqrt((math.pow(x2 - x1, 2) + math.pow(y2 - y1, 2))
Note, by moving the 2 inside of the pow function, you have provided the second argument that it is requesting.
You were close with your initial attempt, you just had a parenthesis after x1 and y1 when you should not have.
Cheers.
Answer:
a) benzene = 910 days
b) toluene = 1612.67 days
Explanation:
Given:
Kd = 1.8 L/kg (benzene)
Kd = 3.3 L/kg (toluene)
psolid = solids density = 2.6 kg/L
K = 2.9x10⁻⁵m/s
pores = n = 0.37
water table = 0.4 m
ground water = 15 m
u = K/n = (2.9x10⁻⁵ * (0.4/15)) / 0.37 = 2.09x10⁻⁶m/s
a) For benzene:

The time will take will be:

b) For toluene:


Answer:
D
Explanation:
took test failed question D is the right answer
B) Oxygen combines with nitrogen in the air to form NOx at about 2500 degrees Fahrenheit.