This doesn't need an ICE chart. Both will fully dissociate in water.
Assume HClO4 and KOH reacts with one another. All you need to do is determine how much HClO4 will remain after the reaction. Calculate pH.
Step 1:
write out balanced equation for the reaction
HClO4+KOH ⇔ KClO4 + H2O
the ratio of HClO4 to KOH is going to be 1:1. Each mole of KOH we add will fully react with 1 mole of HClO4
Step 2:
Determining the number of moles present in HClO4 and KOH
Use the molar concentration and the volume for each:
25 mL of 0.723 M HClO4
Covert volume from mL into L:
25 mL * 1L/1000mL = 0.025 L
Remember:
M = moles/L so we have 0.025 L of 0.723 moles/L HClO4
Multiply the volume in L by the molar concentration to get:
0.025L x 0.723mol/L = 0.0181 moles HClO4.
Add 66.2 mL KOH with conc.=0.273M
66.2mL*1L/1000mL = .0662 L
.0662L x 0.273mol/L = 0.0181 moles KOH
Step 3:
Determine how much HClO4 remains after reacting with the KOH.
Since both reactants fully dissociate and are used in a 1:1 ratio, we just subtract the number of moles of KOH from the number of moles of HClO4:
moles HClO4 = 0.0181; moles KOH = 0.0181, so 0.0181-0.0181 = 0
This means all of the HClO4 is used up in the reaction.
If all of the acid is fully reacted with the base, the pH will be neutral = 7.
Determine the H3O+ concentration:
pH = -log[H3O+]; [H3O+] = 10-pH = 10-7
The correct answer is 1.0x10-7.
<span><span>The column of a fractional distillation apparatus should be
aligned vertical to get better separation because
the column is essentially longer. It will prevent channeling in the
column. </span>Therefore column efficiency will be higher if it is as
vertical as possible instead of tilted.<span> Distillation is a process used to separate a mixture of two (or
more) components. In a typical </span>fractional
distillation, a liquid mixture
is heated in the distilling flask and the
process begins.</span>
Answer:
44 grams/mole
Explanation:
<u>If 1 mol of XO₂ contains the same number of atoms as 60 g of XO3, what is the molar mass of XO₂?</u>
<u></u>
60 grams of XO3 is one mole XO3, since it has the same number of atoms as 1 mole of XO2.
Let c be the molar mass of X. The molar mass of XO3 is comprised of:
X: c
3O: 3 x 16 = 48
Total molar mass of XO3 is = <u>48 + c</u>
We know that the molar mass of XO3 = 60 g/mole, so:
48 + c = 60 g/mole
c = 12 g/mole
The molar mass of XO2 would be:
1 X = 12
2 O = 32
Molar mass = 44 grams/mole, same as carbon dioxide. Carbon's molar mass is 12 grams.
<u></u>
<u></u>
<u>density</u> is a measure of mass per volume. <u>mass</u> is both a property of a physical body and a measure of its resistance to acceleration.
<em>hope this helps! ❤ from peachimin</em>