Answer:
This is due to more hydrogen bonding in ethylene glycol than it is in isopropyl alcohol
Explanation:
The boiling point of isopropyl alcohol is 82.4 °C it contains only a single OH group, hence intermolecular hydrogen bonding is solely responsible for it's boiling point, whereas Ethylene glycol (CH2OHCH2OH) contains 2-OH group and both intermolecular and intramolecular hydrogen bonding are responsible for the higher boiling point of ethylene glycol at 198 °C.
The solution is as follows:
K = [Partial pressure of isoborneol]/[Partial pressure of borneol] = 0.106
The molar mass of isoborneol/borneol is 154.25 g/mol
Mol isoborneol = 15 g/154.25 = 0.0972 mol
Mol borneol = 7.5 g/154.25 = 0.0486 mol
Use the ICE approach
borneol → isoborneol
I 0.0972 0.0486
C -x +x
E 0.0972 - x 0.0486 + x
Total moles = 0.1458
Using Raoult's Law,
Partial Pressure = Mole fraction*Total Pressure
[Partial pressure of isoborneol] = [(0.0972-x)/0.1458]*P
[Partial pressure of borneol] = [(0.0486+x/0.1458)]*P
0.106 = [(0.0972-x)/0.1458]*P/ [(0.0486+x/0.1458)]*P
Solving for x,
x = 0.0832
Thus,
<em>Mol fraction of borneol = (0.0486+0.0832)/0.1458 = 0.904</em>
<em>Mol fraction of isoborneol = (0.0972-0.0832)/0.1458 = 0.096</em>
Answer:
All of the above.
Explanation:
In positive deviation from Raoult's Law occur when the vapour pressure of components is greater than what is expected value in Raoult's law.
When a solution is non ideal then it shows positive or negative deviation.
Let two solutions A and B to form non- ideal solutions.let the vapour pressure of component A is
and vapour pressure of component B is
.
= Vapour pressure of component A in pure form
= Vapour pressure of component B in pure form
=Mole fraction of component A
=Mole fraction of component B
The interaction between A- B is less than the interaction A- A and B-B interaction.Therefore, the escaping tendency of liquid molecules in mixture is greater than the escaping tendency in pure form.Hence, the vapour pressure of a mixture is greater than the initial value of vapour pressure.
,
Therefore, 
Therefore, the enthalpy of mixing is greater than zero and change in volume is greater than zero.
Hence, option a,b,c and d are true.
Answer: Please see answer below
Explanation:
The steps of glycogen degradation is as follows from this order.
--->Hormonal signals trigger glycogen breakdown.
1. Glycogen is (de)branched by hydrolysis of α‑1,6‑glycosidic linkages.
2. Blocks consisting of three glucosyl residues are moved by remodeling of α‑1,4‑glycosidic linkages.
3.[Glucose 1‑phosphate is cleaved from the non reducing ends of glycogen and converted to glucose 6‑phosphate.
--->Glucose 6‑phosphate undergoes further metabolic processing
The degradation of Glycogen follows three steps:
(1) the release of glucose 1-phosphate from glycogen,
(2) the remodeling of the glycogen substrate to permit further degradation, and
(3) the conversion of glucose 1-phosphate into glucose 6-phosphate for further metabolism.
(https://www.ncbi.nlm.nih.gov/books/NBK21190)