The elemental classification for oxygen would be non-metal. It is located in period number 2 and group number 16. It has an atomic number of 8. At room temperature, it exists as a gas. Hope this answers the question. Have a nice day.
Answer:
Half life = 1 / k[Ao]
Explanation:
From:
1/ [A] = kt + 1/ [Ao]
Isolating t on its own, we have:
kt = 1 / [A] - 1 / [Ao]
t = 1 / [Ao] / k
Re-arranging we have:
t = 1 / k [Ao]
The t represents the t=half life of the second order reaction and the formula can be re-written as:
t1/2 = 1 / k [Ao]
This is so because second order reaction decreases at a much faster rate than zero and first order reactions and there slopes decreases to zero at a much faster rate.
Answer:
A
Explanation:
I just did this question in class:))
Answer:
H2O and CO
Explanation:
they both form covalent bonds because none both of the elements are non-metal. Mgo and NaF both have metals in them so they would form ionic bonds.
Covalent bonds, two non-metal
Ionic bonds, a metal and a non-metal
Answer : The thermal energy produced during the complete combustion of one mole of cymene is -7193 kJ/mole
Explanation :
First we have to calculate the heat released by the combustion.

where,
q = heat released = ?
= specific heat of calorimeter = 
= change in temperature = 
Now put all the given values in the above formula, we get:


Thus, the heat released by the combustion = 70.43 kJ
Now we have to calculate the molar enthalpy combustion.

where,
= molar enthalpy combustion = ?
q = heat released = 70.43 kJ
n = number of moles cymene = 

Therefore, the thermal energy produced during the complete combustion of one mole of cymene is -7193 kJ/mole