If Ka for HCN is 6. 2×10^−10 at 25 °C, then the value of Kb for cn− at 25 °C is 1.6 × 10^(-5).
<h3>What is base dissociation constant? </h3><h3 />
The base dissociation constant (Kb) is defined as the measurement of the ions which base can dissociate or dissolve in the aqueous solution. The greater the value of base dissociation constant greater will be its basicity an strength.
The dissociation reaction of hydrogen cyanide can be given as
HCN --- (H+) + (CN-)
Given,
The value of Ka for HCN is 6.2× 10^(-10)
The correlation between base dissociation constant and acid dissociation constant is
Kw = Ka × Kb
Kw = 10^(-14)
Substituting values of Ka and Kw,
Kb = 10^(-14) /{6.2×10^(-10) }
= 1.6× 10^(-5)
Thus, the value of base dissociation constant at 25°C is 1.6 × 10^(-5).
learn more about base dissociation constant :
brainly.com/question/9234362
#SPJ4
Answer:
The value of Kp at this temperature is 7.44*10⁻³
Explanation:
Chemical equilibrium is established when there are two opposite reactions that take place simultaneously at the same speed.
For the general chemical equation for a homogeneous gas phase system:
aA + bB ⇔ cC + dD
where a, b, c and d are the stoichiometric coefficients of compounds A, B, C and D, the equilibrium constant Kp is determined by the following expression:

Where Px is the partial pressure of each of the components once equilibrium has been reached and they are expressed in atmospheres. The equilibrium constant Kp depends solely on temperature and is dimensionless.
In the case of the reaction:
2 HI (g) ⇔ H₂ (g) + I₂ (g)
the equilibrium constant Kp is determined by the following expression:

The system comes to equilibrium at 425 °C, and
- PHI = 0.794 atm
- PH2 = 0.0685 atm
- PI2 = 0.0685 atm
Replacing:

Kp=7.44*10⁻³
<u><em>The value of Kp at this temperature is 7.44*10⁻³</em></u>
Answer: 4000000000
because 20X200000000=4000000000
Option 1/A (It is the first one)