Answer:
bone loss and muscle deterioration
Explanation:
this helps the body keep thriving and bones strong and muscles in tact
Answer:
Eventually, these individual laws were combined into a single equation—the ideal gas ... We find that temperature and pressure are linearly related, and if the ... then P and T are directly proportional (again, when volume and moles of gas are ... of the variables, and they are more difficult to use in fitting theoretical equations ...
Explanation:
Answer is: Cl and Na.
sodium and chlorine are in third period and they have very different properties. Sodium is solid metal and chlorine is gaseous nonmetal.
They form compound NaCl (Sodium chloride), because sodium lost one valence electron and form cation Na⁺, chlorine gain one electron and form anion Cl⁻.
Electron configuration of sodium atom: ₁₁Na 1s² 2s² 2p⁶ 3s¹.
Electron configuration of chlorine atom: ₁₇Cl 1s² 2s² 2p⁶ 3s² 3p⁵.
Other examples are metal-metal pairs and they do not form cation and anion.
Answer:
13.4 (w/w)% of CaCl₂ in the mixture
Explanation:
All the Cl⁻ that comes from CaCl₂ (Calcium chloride) will be precipitate in presence of AgNO₃ as AgCl.
To solve this problem we must find the moles of AgCl = Moles of Cl⁻. As 2 moles of Cl⁻ are in 1 mole of CaCl₂ we can find the moles of CaCl₂ and its mass in order to find mass percent of calcium chloride in the original mixture.
<em>Moles AgCl - Molar mass: 143.32g/mol -:</em>
0.535g * (1mol / 143.32g) = 3.733x10⁻³ moles AgCl = Moles Cl⁻
<em>Moles CaCl₂:</em>
3.733x10⁻³ moles Cl⁻ * (1mol CaCl₂ / 2mol Cl⁻) = 1.866x10⁻³ moles CaCl₂
<em>Mass CaCl₂ -Molar mass: 110.98g/mol-:</em>
1.866x10⁻³ moles CaCl₂ * (110.98g/mol) = 0.207g of CaCl₂ in the mixture
That means mass percent of CaCl₂ is:
0.207g CaCl₂ / 1.55g * 100 =
<h3>13.4 (w/w)% of CaCl₂ in the mixture</h3>
The correct answer is incompressible. Liquids or fluids that behave under pressure are called incompressible fluids because they tend to behave through flowing movements. An example of an incompressible fluid is the lava which comes out of a volcano where once out of the atmosphere becomes dense and flows at a constant volume and velocity.