One mole (abbreviated mol) is equal to 6.022×1023 molecular entities (Avogadro's number), and each element has a different molar mass depending on the weight of 6.022×1023 of its atoms (1 mole). The molar mass of any element can be determined by finding the atomic mass of the element on the periodic table.
B, millimeters because paper is really thin therefore it'd require small measurements for units.
<h3>
Answer:</h3>
78.75 K
<h3>
Explanation:</h3>
<u>We are given;</u>
- Initial pressure, P₁ = 500 torr
- Initial temperature,T₁ = 225 K
- Initial volume, V₁ = 3.3 L
- Final volume, V₂ = 2.75 L
- Final pressure, P₂ = 210 torr
We are required to calculate the new temperature, T₂
- To find the new temperature, T₂ we are going to use the combined gas law;
- According to the combined gas law;
P₁V₁/T₁ = P₂V₂/T₂
We can calculate the new temperature, T₂;
Rearranging the formula;
T₂ =(P₂V₂T₁) ÷ (P₁V₁)
= (210 torr × 2.75 L × 225 K) ÷ (500 torr × 3.3 L)
= 78.75 K
Therefore, the new volume of the sample is 78.75 K
B- Carbon nitrogen and oxygen. All organisms are made up of carbon, oxygen is essential to breath, and nitrogen makes up most of earth's atmosphere.
Explanation:
Reaction equation for this reaction is as follows.

It is given that
= 0.0118.
According to the ICE table,

Initial: 0.86 0.86 0 0
Change: -x -x +x +x
Equilibrium: 0.86 - x 0.86 - x x x
Hence, value of
will be calculated as follows.

0.0118 = 
x = 0.084 atm
Thus, we can conclude that
is 0.084 atm.