Answer:
180° C
Explanation:
First we start by finding the area of the stopper.
A = πd²/4, where d = 1.5 cm = 0.015 m
A = 3.142 * 0.015² * ¼
A = 1.767*10^-4 m²
Next we find the force on the stopper
F = (P - P•)A, where
F = 10 N
P = pressure inside the tube,
P• = 1 atm
10 = (P - 101325) * 1.767*10^-4
P - 101325 = 10/1.767*10^-4
P - 101325 = 56593
P = 56593 + 101325
P = 157918 Pascal
Now, remember, in an ideal gas,
P1V1/T1 = P2V2/T2, where V is constant, then we have
P1/T1 = P2/T2, and when we substitute the values, we have
101325/(273 + 18) = 157918/ T2
101325/291 = 157918/ T2
T2 = (157918 * 291)/101325
T2 = 453 K
T2 = 453 - 273 = 180° C
Answer:
B
Explanation:
Newton’s Second Law of Motion
Newton’s Second Law of Motion states that ‘when an object is acted on by an outside force, the mass of the object equals the strength of the force times the resulting acceleration’.
This can be demonstrated dropping a rock or and tissue at the same time from a ladder. They fall at an equal rate—their acceleration is constant due to the force of gravity acting on them.
The rock's impact will be a much greater force when it hits the ground, because of its greater mass. If you drop the two objects into a dish of water, you can see how different the force of impact for each object was, based on the splash made in the water by each one.
Required Heat = Q
Q = Mass * specific heat of water * change in temp.
Q = 5g * 1g/cal*degC * 20degC
Q = 100 cal of heat is required
To convert calories to Joules,
1 cal = 4.184 Joules
100cal = 418.4 J of heat is needed
Answer: RATE ME AND MAKE ME BRAININESS AND THANK ME
Explanation:Sound waves are pressure waves that travel through Earth's crust, water bodies, and atmosphere. Natural sound frequencies specify the frequency attributes of sound waves that will efficiently induce vibration in a body (e.g., the tympanic membrane of the ear) or that naturally result from the vibration of that body.
Sound waves can potentiate or cancel in accord with the principle of superposition and whether they are in phase or out of phase with each other. Waves of all forms can undergo constructive or destructive interference. Sound waves also exhibit Doppler shifts—an apparent change in frequency due to relative motion between the source of sound emission and the receiving point. When sound waves move toward an observer the Doppler effect shifts observed frequencies higher. When sound waves move away from an observer the Doppler effect shifted observed frequencies lower. The Doppler effect is commonly and easily observed in the passage of planes, trains, and automobiles.
The speed of propagation of a sound wave is dependent upon the density of the medium of transmission. Weather conditions (e.g., temperature , pressure, humidity , etc.) and certain geophysical and topographical features (e.g., mountains or hills) can obstruct sound transmission. The alteration of sound waves by commonly encountered meteorological conditions is generally negligible except when the sound waves propagate over long distances or emanate from a high frequency source. In the extreme cases, atmospheric conditions can bend or alter sound wave transmission.