A fuse melts to protect a circuit.
Answer:
10.4 m/s
Explanation:
The problem can be solved by using the following SUVAT equation:

where
v is the final velocity
u is the initial velocity
a is the acceleration
t is the time
For the diver in the problem, we have:
is the initial velocity (positive because it is upward)
is the acceleration of gravity (negative because it is downward)
By substituting t = 1.7 s, we find the velocity when the diver reaches the water:

And the negative sign means that the direction is downward: so, the speed is 10.4 m/s.
Answer:
Explanation:
Expression for time period of a pendulum is as follows
T = 
l is length of pendulum from centre of bob and g is acceleration due to gravity
Given
Time period T = 1.583
g = 9.846
Substituting the values
1.583 = 
l = 
l = .6244 m
= 62.44 cm
Length of rod = length of pendulum - radius of bob
= 62.44 - 13.62
= 48.82 cm
= .488 m
Answer:
Do u have a picture of the graph?
Explanation:
I can solve it with refraction
Below are the choices that can be found elsewhere:
a. 268 kJ
<span>b. 271 kJ </span>
<span>c. 9 kJ </span>
<span>d. 6 kJ
</span>
So the key thing to realize here is what the information given to you actually means. Sublimation is going from a sold to a gas. Vaporization is going from a liquid to a gas. Hence you can create two equations from the information that you have:
<span>Ga (s) --> Ga (g) delta H = 277 kJ/mol </span>
<span>Ga (l) --> Ga (g) delta H = 271 kJ/mol </span>
<span>From these two equations, you can then infer how to get the melting equation be simply finding the difference between the sublimation (two steps) and vaporization (one step). </span>
<span>Ga (s) --> Ga (l) delta H = 6 kJ/mol </span>
<span>At this point, all you need to do is a bit of stoichiometry. You start with 1.50 mol and multiply by the amount of energy per mole (6 kJ/mol). </span>
<span>*ANSWER* </span>
<span>9 kJ/mol (C)</span>