The mass (g) of the original sample after decomposition is 8.3983 g.
A decomposition reaction can be described as a chemical reaction wherein one reactant breaks down into or extra merchandise.
explanation:
Reaction 2KClO₃ ⇒ 2KCl + 3O₂
moles 2 2 3
molar mass 122.55 74.55 32
Given, Mass of O₂ = 3.29g ⇒ moles of O₂
= (3.29/32) = 0.1028
3 moles of O₂ produced by 2 moles of KClO₃
Therefore, 0.1028 moles of O₂ produced by (2*0.1028/3) = 0.06853 moles of Kclo₃
Mass of KClo₃ in original sample is = moles * molar mass
= 0.06853 * 122.55
= 8.3983 g
A decomposition response occurs whilst one reactant breaks down into or extra merchandise. this may be represented through the general equation: XY → X+ Y. Examples of decomposition reactions consist of the breakdown of hydrogen peroxide to water and oxygen, and the breakdown of water to hydrogen and oxygen.
Learn more about decomposition here:-brainly.com/question/27300160
#SPJ4
Answer:C
Explanation:it gets rid of waste
Answer:
1.5g
Explanation:
According to this question, the amount of copper required to obtain copper sulfide in a 4:1 is 6g. This means that the ratio of copper to sulfur in the compound (copper sulfide) is 4:1.
Hence, to calculate the amount of sulfur required for the reaction to obtain copper sulfide using the above ratio, we say:
1/4 of the amount of copper required (6g)
= 1/4 × 6
= 6/4
= 1.5g of sulfur is required for the reaction to obtain carbon sulfide.