Answer:
Large-scale natural disasters
Explanation:
The emergency situation that rescue workers could be in that would make it difficult for them to get energy to their electrical devices is "Large-scale natural disasters"
Large-scale natural disasters are very destructive and devastating. Their impact and effect can range from destruction of infrastructures, properties, social amenities and even ecosystems. When such disasters break out, they destroy things and which leads to difficulty in accessing certain amenities. Rescue workers even find it difficult to access energy for their electrical devices - because there is power outage.
Some of these large-scale natural disasters are earthquakes, tornadoes, hurricanes, floods, etc.
How an atom reacts chemically depends on how willing it is to share electrons with others.
It’s electrons
Answer:
Using the formula cards again, add the coefficient of 2 in front of the formula and have them recalculate the number of each element and the total number of atoms in each element.
Explanation:
The best description of the process to draw the segment is B. b place a compass at one endpoint of the segment and trace an arc. do the same from the other endpoint. draw a line through the intersections of the arcs.
<h3>What is a segment bisector?</h3>
It should be noted that a segment bisector simply means a line to segment which cuts another line segment at the center but dividing the lines into two equal halves.
In this case, based on the information given, the best description of the process to draw the segment is to place a compass at one endpoint of the segment and trace an arc, do the same from the other endpoint. draw a line through the intersections of the arcs.
In conclusion, the correct option is B.
Learn more about segment on:
brainly.com/question/2437195
#SPJ1
Answer:
36.2 K
Explanation:
Step 1: Given data
- Initial pressure of the gas (P₁): 8.6 atm
- Initial temperature of the gas (T₁): 38°C
- Final pressure of the gas (P₂): 1.0 atm (standard pressure)
- Final temperature of the gas (T₂): ?
Step 2: Convert T₁ to Kelvin
We will use the following expression.
K = °C +273.15
K = 38 °C +273.15 = 311 K
Step 3: Calculate T₂
We will use Gay Lussac's law.
P₁/T₁ = P₂/T₂
T₂ = P₂ × T₁/P₁
T₂ = 1.0 atm × 311 K/8.6 atm = 36.2 K