Answer:
The probability that a randomly chosen person gets an incorrect diagnosis is 2.965% = 0.02965.
Step-by-step explanation:
Given, The test to detect the presence of a liver disorder is 98% accurate for a person who has the disease.
so, probability of incorrect diagnosis = 100-98 = 2% = 0.02.
and 97% accurate for a person who does not have the disease.
so, probability of incorrect diagnosis = 100-97 = 3% = 0.03.
And 3.5% of the people in a given population actually have the disorder.
⇒ the probability that a randomly chosen person gets an incorrect diagnosis is (3.5% × 0.02) + (96.5% × 0.03) = 2.965% = 0.02965.
The simple/ <span>common sense method:
</span>The typical lay out of a quadratic equation is ax^2+bx+c
'c' represents where the line crosses the 'y' axis.
The equation is only translated in the 'y' (upwards/downwards) direction, therefore only the 'c' component of the equation is going to change.
A translation upwards of 10 units means that the line will cross the 'y' axis 10 places higher.
9+10=19,
therefore <u>c=19</u>.
The new equation is: <u>y=x^2+19 </u>
<span>
<span>The most complicated/thorough method:
</span></span>This is useful for when the graph is translated both along the 'y' axis and 'x' axis.
ax^2+bx+c
a=1, b=0, c=9
Find the vertex (the highest of lowest point) of f(x).
Use the -b/2a formula to find the 'x' coordinate of your vertex..
x= -0/2*1, your x coordinate is therefore 0.
substitute your x coordinate into your equation to find your y coordinate..
y= 0^2+0+9
y=9.
Your coordinates of your vertex f(x) are therefore <u>(0,9) </u>
The translation of upward 10 units means that the y coordinate of the vertex will increase by 10. The coordinates of the vertex g(x) are therefore:
<u>(0, 19) </u>
substitute your vertex's y coordinate into f(x)
19=x^2+c
19=0+c
c=19
therefore <u>g(x)=x^2+19</u>
By algebra properties we find the following relationships between each pair of algebraic expressions:
- First equation: Case 4
- Second equation: Case 1
- Third equation: Case 2
- Fourth equation: Case 5
- Fifth equation: Case 3
<h3>How to determine pairs of equivalent equations</h3>
In this we must determine the equivalent algebraic expression related to given expressions, this can be done by applying algebra properties on equations from the second column until equivalent expression is found. Now we proceed to find for each case:
First equation
(7 - 2 · x) + (3 · x - 11)
(7 - 11) + (- 2 · x + 3 · x)
- 4 + (- 2 + 3) · x
- 4 + (1) · x
- 4 + (5 - 4) · x
- 4 - 4 · x + 5 · x
- 4 · (x + 1) + 5 · x → Case 4
Second equation
- 7 + 6 · x - 4 · x + 3
(6 · x - 4 · x) + (- 7 + 3)
(6 - 4) · x - 4
2 · x - 4
2 · (x - 2) → Case 1
Third equation
9 · x - 2 · (3 · x - 3)
9 · x - 6 · x + 6
3 · x + 6
(2 + 1) · x + (14 - 8)
[1 - (- 2)] · x + (14 - 8)
(x + 14) - (8 - 2 · x) → Case 2
Fourth equation
- 3 · x + 6 + 4 · x
x + 6
(5 - 4) · x + (7 - 1)
(7 + 5 · x) + (- 4 · x - 1) → Case 5
Fifth equation
- 2 · x + 9 + 5 · x + 6
3 · x + 15
3 · (x + 5) → Case 3
To learn more on algebraic equations: brainly.com/question/24875240
#SPJ1
Answer:
0.0355029585799?
Step-by-step explanation:
Answer:
x=13,y=0
Step-by-step explanation:
We are given a system of equations

For equation 1,square all terms to reduce it
√x²+√y²=169
x+y=13
Make x the subject as required by the question to use substitution method
x=13-y
Plug x=13-y into eqn 2
3(13-y)+2y=39
39-3y+2y=39
39-y=39
y=39-39=0
Plug y=0 into equation 1
x+0=13
x=0