The answer to this equation is b because the answer on the graph is 2.7 I took the test and got an a
*Hint* the ^ just means that the following numbers are powers like 1.9x10^3 is same as 1.9x10³
To figure this out just multiply
26000000000 × 1.9x10³ = 4.94x10¹³ cells in adults
well, the assumption is that is a rectangle, namely it has two equal pairs, so we can just find the length of one of the pairs to get the dimensions.
hmmmm let's say let's get the length of the segment at (-1,-3), (1,3) for its length
and
the length of the segment at (-1, -3), (-4, -2) for its width
![\bf ~~~~~~~~~~~~\textit{distance between 2 points} \\\\ (\stackrel{x_1}{-1}~,~\stackrel{y_1}{-3})\qquad (\stackrel{x_2}{1}~,~\stackrel{y_2}{3})\qquad \qquad d = \sqrt{( x_2- x_1)^2 + ( y_2- y_1)^2} \\\\\\ \stackrel{length}{L}=\sqrt{[1-(-1)]^2+[3-(-3)]^2}\implies L=\sqrt{(1+1)^2+(3+3)^2} \\\\\\ L=\sqrt{4+36}\implies L=\sqrt{40} \\\\[-0.35em] ~\dotfill](https://tex.z-dn.net/?f=%5Cbf%20~~~~~~~~~~~~%5Ctextit%7Bdistance%20between%202%20points%7D%20%5C%5C%5C%5C%20%28%5Cstackrel%7Bx_1%7D%7B-1%7D~%2C~%5Cstackrel%7By_1%7D%7B-3%7D%29%5Cqquad%20%28%5Cstackrel%7Bx_2%7D%7B1%7D~%2C~%5Cstackrel%7By_2%7D%7B3%7D%29%5Cqquad%20%5Cqquad%20d%20%3D%20%5Csqrt%7B%28%20x_2-%20x_1%29%5E2%20%2B%20%28%20y_2-%20y_1%29%5E2%7D%20%5C%5C%5C%5C%5C%5C%20%5Cstackrel%7Blength%7D%7BL%7D%3D%5Csqrt%7B%5B1-%28-1%29%5D%5E2%2B%5B3-%28-3%29%5D%5E2%7D%5Cimplies%20L%3D%5Csqrt%7B%281%2B1%29%5E2%2B%283%2B3%29%5E2%7D%20%5C%5C%5C%5C%5C%5C%20L%3D%5Csqrt%7B4%2B36%7D%5Cimplies%20L%3D%5Csqrt%7B40%7D%20%5C%5C%5C%5C%5B-0.35em%5D%20~%5Cdotfill)
![\bf (\stackrel{x_1}{-1}~,~\stackrel{y_1}{-3})\qquad (\stackrel{x_2}{-4}~,~\stackrel{y_2}{-2})\qquad \qquad d = \sqrt{( x_2- x_1)^2 + ( y_2- y_1)^2} \\\\\\ \stackrel{width}{w}=\sqrt{[-4-(-1)]^2+[-2-(-3)]^2}\implies w=\sqrt{(-4+1)^2+(-2+3)^2} \\\\\\ w=\sqrt{9+1}\implies w=\sqrt{10} \\\\[-0.35em] ~\dotfill\\\\ \stackrel{\textit{area of the rectangle}}{A=Lw}\implies \sqrt{40}\cdot \sqrt{10}\implies \sqrt{400}\implies \boxed{20}](https://tex.z-dn.net/?f=%5Cbf%20%28%5Cstackrel%7Bx_1%7D%7B-1%7D~%2C~%5Cstackrel%7By_1%7D%7B-3%7D%29%5Cqquad%20%28%5Cstackrel%7Bx_2%7D%7B-4%7D~%2C~%5Cstackrel%7By_2%7D%7B-2%7D%29%5Cqquad%20%5Cqquad%20d%20%3D%20%5Csqrt%7B%28%20x_2-%20x_1%29%5E2%20%2B%20%28%20y_2-%20y_1%29%5E2%7D%20%5C%5C%5C%5C%5C%5C%20%5Cstackrel%7Bwidth%7D%7Bw%7D%3D%5Csqrt%7B%5B-4-%28-1%29%5D%5E2%2B%5B-2-%28-3%29%5D%5E2%7D%5Cimplies%20w%3D%5Csqrt%7B%28-4%2B1%29%5E2%2B%28-2%2B3%29%5E2%7D%20%5C%5C%5C%5C%5C%5C%20w%3D%5Csqrt%7B9%2B1%7D%5Cimplies%20w%3D%5Csqrt%7B10%7D%20%5C%5C%5C%5C%5B-0.35em%5D%20~%5Cdotfill%5C%5C%5C%5C%20%5Cstackrel%7B%5Ctextit%7Barea%20of%20the%20rectangle%7D%7D%7BA%3DLw%7D%5Cimplies%20%5Csqrt%7B40%7D%5Ccdot%20%5Csqrt%7B10%7D%5Cimplies%20%5Csqrt%7B400%7D%5Cimplies%20%5Cboxed%7B20%7D)
That equation can represent the relationship among the image distance,
object distance, and focal length of a lens.
It could describe the effective resistance of two resistors in parallel, the
effective inductance of two coils in parallel, or the effective capacitance
of two capacitors in series.
Thanks for sharing it. Now, did you have a question to ask ?
Answer:

Step-by-step explanation:
The area of the triangle.




