Tryptophan is one of the amino acids found in protein and it has 28 sigma bonds present in the tryptophan.
<h3>What is tryptophan?</h3>
Tryptophan is an essential amino acid that serves several important purposes, like nitrogen balance in adults and growth in infants. Tryptophan is an amino acid needed for normal growth in infants and for the production and maintenance of the body's proteins, muscles, enzymes, and neurotransmitters. It is an essential amino acid that means your body cannot produce it. The body uses tryptophan to help make melatonin and serotonin. Melatonin helps regulate the sleep-wake cycle, and serotonin is thought to help regulate appetite, sleep, mood, and pain.
To learn more about tryptophan, visit;
https://brainly.in/question/1158606
#SPJ4
The amount of CO that would be required to generate 635 g of CO2 will be 404.14 g
<h3>Stoichiometric problem</h3>
First, let us get the equation of the reaction:

From the equation, we can see that the mole ratio of CO to that of CO2 is 1:1.
635 g of CO2 is to be generated.
Mole of 635 g CO2 = mass/molar mass = 635/44.01 = 14.43 moles
Thus, the equivalent mole of CO required will also be 14.43 moles.
Mass of 14.43 moles CO = moles x molar mass = 14.43 x 28.01 = 404.14 g
Hence, 404.14 g of CO will be required to produce 635 g of CO2
More on stoichiometric problems can be found here: brainly.com/question/14465605
#SPJ1
Answer:
Final Volume = 5.18 Liters
Explanation:
Initial Condition:
P1 = 789 mm Hg x (1/760) atm /mm Hg = 1.038 atm
T1 = 22° C = 273 + 22 = 295 K
V1 = 4.7 L
Final Condition:
P2 = 755 mm Hg x (1/760) atm /mm Hg = 0.99 atm
T2 = 37° C = 273 + 37 = 310 K
V2 = ?
Since, (P1 x V1) / T1 = (P2 x V2) / T2,
Therefore,
⇒ (1.038)(4.7) / 295 = (0.99)(V2) / 310
⇒ V2 = 5.18 L (Final Volume)
Use the equation q=ncΔT.
q= heat absorbed our released (in this case 1004J)
n= number of moles of sample ( in this case 2.08 mol)
c=molar heat capacity
ΔT=change in temperature (in this case 20°C)
You have to rewrite the equation for c.
c=q/nΔT
c=1004J/(2.08mol x 20°C)
c=24.1 J/mol°C
I hope this helps