Increasing the concentration of one or more reactants will often increase the rate of reaction. This occurs because a higher concentration of a reactant will lead to more collisions of that reactant in a specific time period.
Reaction rate increases with concentration, as described by the rate law and explained by collision theory. As reactant concentration increases, the frequency of collision increases. The rate of gaseous reactions increases with pressure, which is, in fact, equivalent to an increase in concentration of the gas.
Number of moles= mass/ molar mass
Or n=m/MM
n = number of moles
m = mass
MM = molar mass
1) n CuO = 2.4g / 79.54g/mol = 0.03 mol CuO
2) n Cu(NO3)2.xH2O = 7.26 g / 205.6 = 0.035 moles of Cu(NO3)2.xH2O
3) 205.6 g
Cu = 63.5 g
N = 14g
O =16g
H= 1 g
63.5+ (14+(16*3))*2+1*2+16 =205.6 g
4) yes is 188g
5) I don’t know, I assume was 1
should be clear acid if im not mistaken
Answer : The rate law for the overall reaction is, ![Rate=k[NO]^2[H_2]](https://tex.z-dn.net/?f=Rate%3Dk%5BNO%5D%5E2%5BH_2%5D)
Explanation :
Rate law : It is defined as the expression which expresses the rate of the reaction in terms of molar concentration of the reactants with each term raised to the power their stoichiometric coefficient of that reactant in the balanced chemical equation.
As we are given the mechanism for the reaction :
Step 1 :
(slow)
Step 2 :
(fast)
Overall reaction : 
The rate law expression for overall reaction should be in terms of
.
As we know that the slow step is the rate determining step. So,
The slow step reaction is,

The expression of rate law for this reaction will be,
![Rate=k[NO]^2[H_2]](https://tex.z-dn.net/?f=Rate%3Dk%5BNO%5D%5E2%5BH_2%5D)
Hence, the rate law for the overall reaction is, ![Rate=k[NO]^2[H_2]](https://tex.z-dn.net/?f=Rate%3Dk%5BNO%5D%5E2%5BH_2%5D)