All nuclear chemistry revolves around changing the identity of base elements.
The answer is the third statement.
Because nuclear chemistry is changing base elements' identities, the atomic number/number of protons is what is changing. While the number of electrons can change, your question is too general to know whether electrons are going to be gained, lost, or retained in the reaction.
The answer is: the rate of reaction is 850 g/min.
n(P₄O₁₀) = 1.5 mol; amount of product.
M(P₄O₁₀) = 283.9 g/mol; molar mass of phosphorus(V) oxide.
m(P₄O₁₀) = n(P₄O₁₀) · M(P₄O₁₀).
m(P₄O₁₀) = 1.5 mol · 283.9 g/mol.
m(P₄O₁₀) = 425.85 g in 30 seconds.
Make proportion: 425 g : 30 s = m(P₄O₁₀) : 60 s.
m(P₄O₁₀) = 850 g in 60 s.
Answer:
I believe there is 2 but I could be wrong so really sorry if I am
Answer:
Number of moles of sodium reacted = 0.707 moles
Explanation:
P(H₂) = P(T) – P(H₂O)
P(H₂) = 754 – 17.5 = 736.5 mm Hg
Use the ideal gas equation which
PV= nRT, where P is the pressure V is the volume, n is the number of moles R is the Gas Constant and T is temperature
<u>Re- arrange to calculate the number of moles and using the data provided</u>
n = P x V/R x T
n =736.5 x 8.77/62.36367 x (mmHg/mol K) x (20 + 273)
n = 0.35348668
n = 0.353 moles H₂
<u>from the equation we know that</u>
0.353 mole H₂ x 2mole Na/1mole H₂, So
0.353 x 2 = 0.707 mole Na
The number of moles of Sodium metal reacted were 0.707 moles.
Boiling point ..................................................