Hello!
To find the amount of energy need to raise the temperature of 125 grams of water from 25.0° C to 35.0° C, we will need to use the formula: q = mcΔt.
In this formula, q is the heat absorbed, m is the mass, c is the specific heat, and Δt is the change in temperature, which is found by final temperature minus the initial temperature.
Firstly, we can find the change in temperature. We are given the initial temperature, which is 25.0° C and the final temperature, which is 35.0° C. It is found by subtract the final temperature from the initial temperature.
35.0° C - 25.0° C = 10.0° C
We are also given the specific heat and the grams of water. With that, we can substitute the given values into the equation and multiply.
q = 125 g × 4.184 J/g °C × 10.0° C
q = 523 J/°C × 10.0° C
q = 5230 J
Therefore, it will take 5230 joules (J) to raise the temperature of the water.
Answer:
Explanation:
conjugate acid, based on Brønsted–Lowry acid–base theory, is a chemical compound that is formed by the reception of a proton by a base
a. CH₃COOH + H₂O ⇌ H₃0⁺ + CH₃C00-
Acid <> CH₃COOH
Base <> H₂O
Conjugate acid <> H₃0 +
Conjugate base <>CH₃C00-
b. HCO₃ + H₂O ⇌ H₂CO₃⁻ + OH⁻
Acid <> H₂O
Base <> HCO₃
Conjugate acid <> H₂CO₃⁻
Conjugate base <>OH⁻
C. HNO₃ + SO₄²⁻ ⇌ HSO₄⁻ + NO₃⁻
Acid <>HNO₃
Base <>SO₄²⁻
Conjugate acid <>HSO₄⁻
Conjugate base <>NO₃⁻
A Bronsted acid is reffered to as a proton donor while a Bronsted base is a proton acceptor
1) KCl
Potassium Chloride is an ionic bond because it exists between a metal and a nonmetal. The Potassium ion is a cation, carrying a +1 charge; the Chlorine is an anion, carrying a -1 charge.