Answer:
M = 1433.5 kg
Explanation:
This exercise is solved using the Archimedean principle, which states that the hydrostatic thrust is equal to the weight of the desalinated liquid,
B = ρ g V
with the weight of the truck it is in equilibrium with the push, we use Newton's equilibrium condition
Σ F = 0
B-W = 0
B = W
body weight
W = M g
the volume is
V = l to h
rho_liquid g (l to h) = M g
M = rho_liquid l a h
we calculate
M = 1000 4.7 6.10 0.05
M = 1433.5 kg
Answer:
1 st question: Control variable
2nd question: random variable
3rd question: if the two objects are dropped from the same height they will hit the ground at the same time
Answer:
Ft = 17.48°C
Explanation:
Ft is the final temperature. However, ice absorbs heat during two process of melting and cooling and as such, there is no loss of heat to or from the surrounding hence by conservation of energy.
Therefore,
Heat absorbed by water of 20g = heat rejected by water of 265g.
So; M(ice)[C(ice) [(ΔT) + LH(ice) + C(water)(ΔT)] = C(water) M(water) (ΔT)
So, 20[(2.108) [0 - (-20)] + 333.5 + 4.187(Ft - 0)]] = (285)(4.187) (25 - Ft)
To get;
7513 + 83.74 Ft = 29832.4 - 1193.3 Ft
So factorizing, we get;
83.74 Ft + 1193.3 Ft = 29832.4 - 7513
So; 1277.04 Ft = 22319.4
So; Ft = 22319.4/1277.04 = 17.48°C
Answer:
0.04 mm Hg / mL / min .
Explanation:
Arterial pressure = 120 mm Hg
right atrial pressure = 0 mm Hg
Drop in pressure due to peripheral resistance = 120 mm Hg
volume of cardiac output per minute = 3000 mL/min
total peripheral resistance
= 120 / 3000 mm Hg / mL / min
= 0.04 mm Hg / mL / min .