Answer:
warmer air
Explanation:
the particles are more excited which increases the probability that the particles will bump into each other
Answer:
2.2nC
Explanation:
Call the amount by which the spring’s unstretched length L,
the amount it stretches while hanging x1
and the amount it stretches while on the table x2.
Combining Hooke’s law with Newton’s second law, given that the stretched spring is not accelerating,
we have mg−kx1 =0, or k = mg /x1 , where k is the spring constant. On the other hand,
applying Coulomb’s law to the second part tells us ke q2/ (L+x2)2 − kx2 = 0 or q2 = kx2(L+x2)2/ke,
where ke is the Coulomb constant. Combining these,
we get q = √(mgx2(L+x2)²/x1ke =2.2nC
C. Series
Consider resistors in a circuit - if all the resistors in the circuit are in series and one of the resistors fails then no current can flow thru the circuit,
If the resistors are in parallel then then each resistor experiences the same voltage drop regardless of whether or not any resistor in particular is carrying current.