It <span>states that the force F needed to extend or compress a spring by some distance X is proportional to that distance.
For elastic materials, they extend more in same amount of force, (as they are directly proportional), due to it's elastic nature (presence of large deforming force)
Hope this helps!</span>
Answer:
The average forces would be the same
Explanation:
Both have the same velocity on impact as they fell from the same height.
Both have the same velocity after the bounce because they reach the same height.
Both have the same mass
Both will thus experience the same impulse because both have the same change in momentum.
Therefore both experience the same average force.
<h2>
Answer:442758.96N</h2>
Explanation:
This problem is solved using Bernoulli's equation.
Let
be the pressure at a point.
Let
be the density fluid at a point.
Let
be the velocity of fluid at a point.
Bernoulli's equation states that
for all points.
Lets apply the equation of a point just above the wing and to point just below the wing.
Let
be the pressure of a point just above the wing.
Let
be the pressure of a point just below the wing.
Since the aeroplane wing is flat,the heights of both the points are same.

So,
Force is given by the product of pressure difference and area.
Given that area is
.
So,lifting force is 
Answer:
This question cannot be answered
Explanation:
This is a practical experiment which can only be done in person. Kindly go through the instructions and do the experiment carefully.