Answer:
The length of the sloping section of the ramp is 20.12 m
Step-by-step explanation:
Given;
the total height of the bank, h = 2.8 m
The slope of the ramp must be 8° to the horizontal, i.e, θ = 8°
Let the length of the sloping section = L
let the horizontal distance between the height of the bank and sloping section = b
Thus, h, L and b forms three sides of a right angled-triangle, with L as the hypotenuse side, h (height of the triangle) as the opposite side and b (base of the triangle) as the adjacent side.
We determine L by applying the following formula;
Sinθ = opposite / hypotenuse
Sin θ = h / L
L = h / Sin θ
L = 2.8 / Sin 8
L = 2.8 / 0.13917
L = 20.12 m
Therefore, the length of the sloping section of the ramp is 20.12 m
-2,3 is (x1,y1) and (4,-5) is (x2,y2) so you do y2-y1/x2-x1
y2-y1 is -5-3 which is -8 and x2-x1 is 4-(-2) which is 6 so you get
-8/6= -4/3
A and b because both values are less than 365
61 because it occurs the most
Hope that helped:)!!!!!!!
Use TrianCal to draw a triangle with phi as Great Piramid (minimum perimeter given 2 equal heights) = maximun stability.
NOTE: Phi=(1+√5)/2≈1.62 and acos(1/Phi)≈51.83º