Answer:
Probability that the measure of a segment is greater than 3 = 0.6
Step-by-step explanation:
From the given attachment,
AB ≅ BC, AC ≅ CD and AD = 12
Therefore, AC ≅ CD = 
= 6 units
Since AC ≅ CD
AB + BC ≅ CD
2(AB) = 6
AB = 3 units
Now we have measurements of the segments as,
AB = BC = 3 units
AC = CD = 6 units
AD = 12 units
Total number of segments = 5
Length of segments more than 3 = 3
Probability to pick a segment measuring greater than 3,
= 
= 
= 0.6
Answer:
Step-by-step explanation:
1) Let the random time variable, X = 45min; mean, ∪ = 30min; standard deviation, α = 15min
By comparing P(0 ≤ Z ≤ 30)
P(Z ≤ X - ∪/α) = P(Z ≤ 45 - 30/15) = P( Z ≤ 1)
Using Table
P(0 ≤ Z ≤ 1) = 0.3413
P(Z > 1) = (0.5 - 0.3413) = 0.1537
∴ P(Z > 45) = 0.1537
2) By compering (0 ≤ Z ≤ 15) ( that is 4:15pm)
P(Z ≤ 15 - 30/15) = P(Z ≤ -1)
Using Table
P(-1 ≤ Z ≤ 0) = 0.3413
P(Z < 1) = (0.5 - 0.3413) = 0.1587
∴ P(Z < 15) = 0.1587
3) By comparing P(0 ≤ Z ≤ 60) (that is for 5:00pm)
P(Z ≤ 60 - 30/15) = P(Z ≤ 2)
Using Table
P(0 ≤ Z ≤ 1) = 0.4772
P(Z > 1) = (0.5 - 0.4772) = 0.0228
∴ P(Z > 60) = 0.0228
The vector ab has a magnitude of 20 units and is parallel to the
vector 4i + 3j. Hence, The vector AB is 16i + 12j.
<h3>How to find the vector?</h3>
If we have given a vector v of initial point A and terminal point B
v = ai + bj
then the components form as;
AB = xi + yj
Here, xi and yj are the components of the vector.
Given;
The vector ab has a magnitude of 20 units and is parallel to the
vector 4i + 3j.
magnitude

Unit vector in direction of resultant = (4i + 3j) / 5
Vector of magnitude 20 unit in direction of the resultant
= 20 x (4i + 3j) / 5
= 4 x (4i + 3j)
= 16i + 12j
Hence, The vector AB is 16i + 12j.
Learn more about vectors;
brainly.com/question/12500691
#SPJ1
B is your answer. Hope this helps :)