The answer is C.
Ionic compounds are those that bring together anions and cations bonded together by ionic bonds. The electrostatic forces of the different charges are significant in the bonds that make them strong hence require high energy to break them (high melting point). Due to the regular structure of ionic compound that tend to form lattices in solid form, when struck, they shatter along the lines of weakness of the lattice.
Answer:
The answer to the question is
The two balls, although of different masses, could be made to have the same demolishing force by setting the velocity of the 100 kg ball to 1.5 times the velocity of the 150 kg ball.
That is if V₁ is the velocity of the 150 kg ball and V₂ is the velocity of the 100 kg ball then V₂ = 1.5×V₁ for the demolishing effect of the two balls to be equal.
Explanation:
To answer the we are required to explain the meaning of momentum and state its properties
Momentum is a physical property of an object in motion. It indicates the amount of motion inherent in the object. An object in motion is said to have momentum
The types of momentum possessed by an object can be classified into either
1, Linear momentum or
2. Angular momentum
An object moving with a velocity, v has linear momentum while a spinning object has an angular momentum
The momentum is given by the formula
P = m × V
Where m = mass and
V = velocity
Newtons second law of motion states that, the force acting on an object is equivalent to the rate of change of momentum produced and acting in the direction of the force
Properties of momentum
From the above statements it means that the two balls can be made equivalent by having the appropriate amount of speed. That iis the two balls can have the same momentum thus for equal momentum effect, we have
150 kg × V₁ = 100 kg × V₂
or V₂ = 1.5×V₁
The new gravitation force at the new location is 40 N
Explanation:
The weight of the astronaut is given by the equation
(1)
where
m is the mass of the astronaut
g is the acceleration of gravity
The acceleration of gravity at a certain distance
from the centre of the Earth is given by

where G is the gravitational constant and M is the Earth's mass. So we can rewrite eq.(1) as

When the astronaut is on the Earth's surface,
(where R is the Earth's radius), so his weight is

Later, he moves to another location where his distance from the Earth's surface is 3 times the previous distance, so the new distance from the Earth's centre is

Therefore, the new weight is

Which means that his weight has decreased by a factor 16: therefore, the new weight is

Learn more about gravitational force:
brainly.com/question/1724648
brainly.com/question/12785992
#LearnwithBrainly
Answer:
c
if you calculate the net force you get 490 N
Answer:
<h2>3.0 m/s²</h2>
Explanation:
The acceleration of an object given it's mass and the force acting on it can be found by using the formula

From the question we have

We have the final answer as
<h3>3.0 m/s²</h3>
Hope this helps you