1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Flauer [41]
3 years ago
7

During a rockslide, a 670 kg rock slides from rest down a hillside that is 740 m along the slope and 240 m high. The coefficient

of kinetic friction between the rock and the hill surface is 0.25. (a) If the gravitational potential energy U of the rock-Earth system is zero at the bottom of the hill, what is the value of U just before the slide? (b) How much energy is transferred to thermal energy during the slide? (c) What is the kinetic energy of the rock as it reaches the bottom of the hill? (d) What is its speed then?
Physics
1 answer:
ElenaW [278]3 years ago
7 0

a) 1.58\cdot 10^6 J

b) 1.15\cdot 10^6 J

c) 0.43\cdot 10^6 J

d) 35.8 m/s

Explanation:

a)

The gravitational potential energy of an object is the energy possessed by the object due to its location with respect to the ground.

It is given by:

U=mgh

where

m is the mass of the object

g is the acceleration due to gravity

h is the height of the object, relative to a reference level

Here, the reference level is taken at the bottom of the hill (where the potential energy is zero).

So, we have:

m = 670 kg is the mass of the rock

g=9.8 m/s^2

h = 240 m is the initial height of the rock

So, the potential energy of the rock just before the slide is

U=(670)(9.8)(240)=1.58\cdot 10^6 J

b)

The energy transferred to thermal energy during the slide is equal to the work done by friction, which is:

W=F_f d

where

F_f is the force of friction

d = 740 m is the displacement of the rock along the ramp

The force of friction is given by:

F_f=-\mu mg cos \theta

where

\mu=0.25 is the coefficient of friction

m = 670 kg is the mass of the rock

\theta is the angle of the ramp

Since we know the lenght of the ramp (d = 740 m) and the height (h = 240 m), we can find the angle:

\theta=sin^{-1}(\frac{h}{d})=sin^{-1}(\frac{240}{740})=18.9^{\circ}

Therefore, the work done by friction is:

W=-\mu m g cos \theta d =-(0.25)(670)(9.8)(cos 18.9^{\circ})(740)=-1.15\cdot 10^6 J

So, the energy transferred to thermal energy is 1.15\cdot 10^6 J.

c)

According to the law of conservation of energy, the kinetic energy of the rock as it reaches the bottom of the hill will be equal to the initial potential energy (at the top) minus the energy transformed into thermal energy.

Therefore, we have:

K_f = U_i -E_t

where here we have:

U_i=1.58\cdot 10^6 J is the potential energy of the rock at the top of the hill

E_t=1.15\cdot 10^6 J is the energy converted into thermal energy

Substituting, we find

K_f=1.58\cdot 10^6-1.15\cdot 10^6=0.43\cdot 10^6 J

So, this is the kinetic energy of the rock at the bottom of the hill.

d)

The kinetic energy of the rock at the bottom of the hill can be rewritten as

K_f=\frac{1}{2}mv^2

where

m is the mass of the rock

v is its final speed

In this problem, we have:

K_f=0.43\cdot 10^6 J is the final kinetic energy of the hill

m = 670 kg is the mass of the rock

Therefore, the final speed of the rock is:

v=\sqrt{\frac{2K_f}{m}}=\sqrt{\frac{2(0.43\cdot 10^6)}{670}}=35.8 m/s

You might be interested in
Katya listed major questions that scientists try to answer when they classify organisms. Her list included the following questio
valentinak56 [21]
<span>An ecosystem can only sustain so many organisms. That limit would be its carrying capacity. If the population goes above that number then other factors will cause the population to crash and then rebound to a constant level. </span>
5 0
3 years ago
Read 2 more answers
There. That is better.
mihalych1998 [28]

a
a
b
b
a
b
a
This will really help you learn a lot.

6 0
3 years ago
What is the period? Blank seconds.
FromTheMoon [43]

Answer:

Period refers to the time for something to happen and is measured in seconds/cycle

8 0
3 years ago
What is the direction of friction if a ball is rolling on the ground?
morpeh [17]
The direction is the same as the direction the ball is moving in. Because of the rolling of the ball, the direction of movement of the surface of the ball is opposite the overall direction of the ball. Since friction will oppose the direction of movement of the surface of the ball, it is in the same direction as the net direction of movement of the ball.
3 0
3 years ago
Is the bike rider in the picture above demonstrating kinetic energy or potential energy? you need to explain your answer.
soldi70 [24.7K]

Answer:

Kinetic energy

Explanation:

Kinetic energy is a function of velocity. Since the rider is moving at a certain speed, he's demonstrating kinetic energy. It can't be potential energy because potential energy encompass mgh

4 0
3 years ago
Other questions:
  • Match each method of transferring electric charge with the correct description
    11·2 answers
  • Tornadoes are most frequent from _____. April to June October to December January to March July to August
    14·1 answer
  • ___________ currents in the Earth's mantle cause plate movement which causes earthquakes and volcanic activity
    7·2 answers
  • How can a person detect infrared rays without an instrument?
    14·2 answers
  • If we approximate the rack to be completely flat and the racecar is travelling a constant 30.5 m/s around the turn, what forces
    14·1 answer
  • The velocity of a sky diver t seconds after jumping is given by v(t) = 80(1 − e−0.2t). After how many seconds is the velocity 65
    11·1 answer
  • Would you expect the bonds in ammonia to be polar covalent?
    14·1 answer
  • A car is traveling at 75 m/s. 50 seconds later it is traveling at 25 m/s. What is the car’s acceleration?
    12·1 answer
  • List two animals that migrate to the clearing
    5·1 answer
  • The weight of an iron block is 8.0±0.3? and is placed on a wooden base of area, 3.5±0.2? 2. Calculate the pressure exerted by th
    8·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!