<span>A material through which a current does not move easily is called
an insulator.
Technically, charges CAN move through an insulator, but they lose
a lot of energy doing it, so the current that flows through the insulator
is very very small, usually too small to even measure.
Another way to look at it: Insulators have high resistance.
</span>
I think your answer would be (D) microscope with a video camera
Hope i helped!
Answer:
The resistors will be in parallel to produce a net resistance of 4ohm and current in 20 ohm resistor will be 0.5A and 5ohm resistor will be 2A.
Explanation:
We are given 10 voltage power source and we have two Resistors with resistance of 20 ohm and 5ohm.
We need to find the orientation in which these two resistors would be arranged so that the circuit could get a current of 2.5Ampere.
Using ohm's law we have
V = I*R
V= voltage
I= current
R= resistance
10 = 2.5*R
R = 10/2.5 = 4ohm
that means we need a total of 4ohm resistance from these two resistors.
since the net Resistance(4ohm) is lower than the smallest resistance(5ohm) available that means the orientation of the resistors will be in parallel.

R(net) =4ohm
Now the orientation of the resistors are in parallel so the current will be divided.
we know that the current will divide in opposite manner the arm which provides more resistance less current will flow from there and vice versa.
We know that the voltage in parallel remains same
In 20 ohm resistance
again using ohms law
V = i1*R1
10 = i1*20
i1 = 0.5A
in 5ohm resistor
V=i2*R2
10 = I2*5
i2 =2A
and i1+i2 = 0.5+2= 2.5A which means our calculation is correct.
Therefore the resistors will be in parallel to produce a net resistance of 4ohm and current in 20 ohm resistor will be 0.5A and 5ohm resistor will be 2A.
The movements of the tectonic plates
Answer:
λ = 1360 m
Explanation:
Given data:
frequency of driving nails is given as 1 stroke per second mean at every 0.25 sec she hit the nails
speed of sound is given as 340 m/s
we know that the wave equation is given as
Speed = frequency × wavelength,
v = f × λ
where,
v = speed in meters/second (m/s)
f = frequency in Hertz (Hz)
substituing value to get wavelength of her driving nails


λ = 1360 m