A -..................................is the correct option
Answer:
calm down please its not that serious maybe no one saw it yet
Explanation:
Answer:
ρ/ρ2 = 3 / R₀ the two densities are different
Explanation:
Density is defined as
ρ = M / V
As the nucleus is spherical
V = 4/3 π r³
Let's replace
ρ = A / (4/3 π R₀³)
ρ = ¾ A / π R₀³
b)
ρ2 = F / area
The area of a sphere is
A = 4π R₀²
ρ2 = F / 4π R₀²
ρ2 = F / 4π R₀²
Atomic number is the number of protons in the nucleon in not very heavy nuclei. This number is equal to the number of neutrons, but changes in heavier nuclei, there are more neutrons than protons.
Let's look for the relationship of the two densities
ρ/ρ2 = ¾ A / π R₀³ / (F / 4π R₀²)
ρ /ρ2 = 3 (A / F) (1 / R₀)
In this case it does not say that the nucleon number is A (F = A), the relationship is
ρ/ρ2 = 3 / R₀
I see that the two densities are different
Answer:
W = 1,307 10⁶ J
Explanation:
Work is the product of force by distance, in this case it is the force of gravitational attraction between the moon (M) and the capsule (m₁)
F = G m₁ M / r²
W = ∫ F. dr
W = G m₁ M ∫ dr / r²
we integrate
W = G m₁ M (-1 / r)
We evaluate between the limits, lower r = R_ Moon and r = ∞
W = -G m₁ M (1 /∞ - 1 / R_moon)
W = G m1 M / r_moon
Body weight is
W = mg
m = W / g
The mass is constant, so we can find it with the initial data
For the capsule
m = 1000/32 = 165 / g_moon
g_moom = 165 32/1000
.g_moon = 5.28 ft / s²
I think it is easier to follow the exercise in SI system
W_capsule = 1000 pound (1 kg / 2.20 pounds)
W_capsule = 454 N
W = m_capsule g
m_capsule = W / g
m = 454 /9.8
m_capsule = 46,327 kg
Let's calculate
W = 6.67 10⁻¹¹ 46,327 7.36 10²² / 1.74 10⁶
W = 1,307 10⁶ J
Answer:
608kg
Explanation:
Formula : <u>Kinetic</u><u> </u><u>energy</u><u> </u>
½ ×mass x speed²
<u>47500</u>
½×12.5²
=608 Kg